References
- H. Saarenpaa, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, "Aluminum Doped Zinc Oxide Films Grown by Atomic Layer Deposition for Organic Photovoltaic Devices," Sol. Energy Mater. Sol. Cells, 94 [8] 1379-83 (2010). https://doi.org/10.1016/j.solmat.2010.04.006
- A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO Nanotube Based Dye-Sensitized Solar Cells," Nano Lett., 7 [8] 2183-87 (2007). https://doi.org/10.1021/nl070160+
- S.-H. K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, "Transparent and Photo-Stable ZnO Thin-Film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel," Adv. Mater., 21 [6] 678-82 (2009). https://doi.org/10.1002/adma.200801470
- J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, "p-Type ZnO Materials: Theory, Growth, Properties and Devices," Prog. Mater. Sci., 58 [6] 874-985 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.002
- S. Chu, G. P. Wang, W. H. Zhou, Y. P. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, "Electrically Pumped Waveguide Lasing from ZnO Nanowires," Nat. Nanotechnol., 6 506-10 (2011). https://doi.org/10.1038/nnano.2011.97
- R. Rooder, T. P. H. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, "Ultrafast Dynamics of Lasing Semiconductor Nanowires," Nano Lett., 15 [7] 4637-43 (2015). https://doi.org/10.1021/acs.nanolett.5b01271
- X. F. Pan, X. Liu, A, Bermak, and Z. Y. Fan, "Self-Gating Effect Induced Large Performance Improvement of ZnO Nanocomb Gas Sensors," ACS Nano, 7 [10] 9318-24 (2013). https://doi.org/10.1021/nn4040074
- T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. A. Golberg, "Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors," Sensors, 9 [8] 504 (2009). https://doi.org/10.1109/JSEN.2009.2015016
- D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, "Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors," Adv. Mater., 26 [10] 1541-50 (2014). https://doi.org/10.1002/adma.201304363
- Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Lett., 8 [5] 1501-5 (2008). https://doi.org/10.1021/nl080659j
- R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z. L. Wang, and C. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array," Adv. Fun. Mater., 25 [19] 2884-91 (2015). https://doi.org/10.1002/adfm.201500801
- Y. J. Choi and H. H. Park, "A Simple Approach to the Fabrication of Fluorine-Doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into the Growth Mode," J. Mater. Chem. C, 2 98-108 (2014). https://doi.org/10.1039/C3TC31478B
- F. Meng, S. Peng, G. Xu, Y. Wang, F. Ge, and F. Huang, "Optimizing the Discharge Voltage in Magnetron Sputter Deposition of High Quality Al-doped ZnO Thin Films," J. Vac. Sci. Technol., A, 33 [6] 061503 (2015). https://doi.org/10.1116/1.4927437
- J. Rousset, E. Saucedo, and D. Lincot, "Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications," Chem. Mater., 21 [3] 534-40 (2009). https://doi.org/10.1021/cm802765c
- H. Akazawa, "Modification of Transparent Conductive ZnO and Ga-doped ZnO Films by Irradiation with Electron Cyclotron Resonance Argon Plasma", J. Vac. Sci. Technol. A, 29 031304 (2011). https://doi.org/10.1116/1.3571603
- D. J. Lee, K. J. Kim, S. H. Kim, J. Y. Kwon, J. Xu, and K. B. Kim, "Atomic Layer Deposition of Ti-doped ZnO Films with Enhanced Electron Mobility," J. Mater. Chem. C, 1 4761-69 (2013). https://doi.org/10.1039/c3tc30469h
- A. Janotti and C. G. Van de Walle, "Native Point Defects in ZnO," Phys. Rev. B, 76 [16] 165202 (2007). https://doi.org/10.1103/physrevb.76.165202
- C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type Doping Difficulty in ZnO: The Impurity Perspective," Phys. Rev. B, 66 [7] 073202 (2002). https://doi.org/10.1103/physrevb.66.073202
- R. Vidya, P. Ravindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, "Energetics of Intrinsic Defects and Their Complexes in ZnO Investigated by Density Functional Calculations," Phys. Rev. B, 83 [4] 045206 (2011). https://doi.org/10.1103/physrevb.83.045206
- Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, "Control of Conductivity Type in Undoped ZnO Thin Films Grown by Metalorganic Vapor Phase Epitaxy," J. Appl. Phys., 95 [11] 6268-72 (2004). https://doi.org/10.1063/1.1713040
- C. F. Yu, C. W. Sung, S. H. Chen, and S. J. Sun, "Relationship between the Photoluminescence and Conductivity of Undoped ZnO Thin Films Grown with Various Oxygen Pressures," Appl. Surf. Sci., 256 [3] 792-96 (2009). https://doi.org/10.1016/j.apsusc.2009.08.061
- G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, "Control of p- and n-type Conductivity in Sputter Deposition of Undoped ZnO," Appl. Phys. Lett., 80 [7] 1195 (2002). https://doi.org/10.1063/1.1449528
- A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida, "p-type Conduction in Codoped ZnO Thin Films," J. Appl. Phys., 93 [1] 396 (2003). https://doi.org/10.1063/1.1527210
- X. Liu, X. Wu, H. Cao, and R. P. H. Chang, "Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma-Enhanced Chemical Vapor Deposition," J. Appl. Phys., 95 [6] 3141-47 (2004). https://doi.org/10.1063/1.1646440
- L. Cui, H. Y. Zhang, G. G. Wang, F. X. Yang, X. P Kuang, R. Sun, and J. C. Han, "Effect of Annealing Temperature and Annealing Atmosphere on the Structure and Optical Properties of ZnO Thin Films on Sapphire (0 0 0 1) Substrates by Magnetron Sputtering," Appl. Surf. Sci., 258 [7] 2479-85 (2012). https://doi.org/10.1016/j.apsusc.2011.10.076
- Y. C. Cheng, Y. S. Kuo, Y. H. Li, J. J. Shyue, and M. J. Chen, "Stable p-type ZnO Films Grown by Atomic Layer Deposition on GaAs Substrates and Treated by Post- Deposition Rapid Thermal Annealing," Thin Solid Films, 519 [16] 5558-61 (2011). https://doi.org/10.1016/j.tsf.2011.02.072
- D. M. King, S. I. Johnson, J. Li, X. Du, X. Liang, and A. W. Weimer, "Atomic Layer Deposition of Quantum-Confined ZnO Nanostructures," Nanotechnology, 20 [19] 195401 (2009). https://doi.org/10.1088/0957-4484/20/19/195401
-
K. J. Qian, S. Chen, B. Zhu, L. Chen, S. J. Ding, H. L. Lu, Q. Q. Sun, D. W. Zhang, and Z. Chen, "Atomic Layer Deposition of ZnO on Thermal
$SiO_2$ and Si Surfaces Using$N_2$ -Diluted Diethylzinc and$H_2O_2$ Precursors," Appl. Surf. Sci., 258 [10] 4657-66 (2012). https://doi.org/10.1016/j.apsusc.2012.01.054 - J. Aarik, A. Aisla, T. Uustare, M. Ritala, and L. Markku, "Titanium Isopropoxide as a Precursor for Atomic Layer Deposition: Characterization of Titanium Dioxide Growth Process," Appl. Surf. Sci., 161 [3-4] 385-95 (2000). https://doi.org/10.1016/S0169-4332(00)00274-9
-
Y. Wang, K. M. Kang, M. Kim, and H. H. Park, "Oxygen Vacancy-Passivated ZnO Thin Film Formed by Atomic Layer Deposition Using
$H_2O_2$ ," J. Vac. Sci. Technol., A, 36 [3] 031504 (2018). https://doi.org/10.1116/1.5012022 - Y. Wang, K. M. Kang, M. Kim, and H. H. Park, "Low Temperature Method to Passivate Oxygen Vacancies in Un-doped ZnO Films Using Atomic Layer Deposition," Thin Solid Films, 660 852-58 (2018). https://doi.org/10.1016/j.tsf.2018.03.003
- R. W. Johnson, A. Hultqvist, and S. F. Bent, "A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications," Mater. Today, 17 [5] 236-46 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
- S. H. K. Park and Y. E. Lee, "Controlling Preferred Orientation of ZnO Thin Films by Atomic Layer Deposition," J. Mater. Sci., 39 [6] 2195-97 (2004). https://doi.org/10.1023/B:JMSC.0000017786.81842.ae
-
N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, "Control of Preferred Orientation for
$ZnO_x$ Films: Control of Self-Texture," J. Cryst. Growth, 130 [1-2] 269-79 (1993). https://doi.org/10.1016/0022-0248(93)90861-P - S.-Y. Pung, K.-L. Choy, X. H. Hou, and C. X. Shan, "Preferential Growth of ZnO Thin Films by the Atomic Layer Deposition Technique," Nanotechnology, 19 [43] 435609 (2008). https://doi.org/10.1088/0957-4484/19/43/435609
-
D. M. King, X. H. Du, A. S. Cavanagh, and A. W. Weimer, "Quantum Confinement in Amorphous
$TiO_2$ Films Studied via Atomic Layer Deposition," Nanotechnology, 19 [44] 445401 (2008). https://doi.org/10.1088/0957-4484/19/44/445401 - C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, "A Comparative Analysis of Deep Level Emission in ZnO Layers Deposited by Various Methods," J. Appl. Phys., 105 [1] 013502 (2009). https://doi.org/10.1063/1.3054175
- C. Ton-That, L. Weston, and M. R. Phillips, "Characteristics of Point Defects in the Green Luminescence from Znand O-rich ZnO," Phys. Rev. B, 86 [11] 115205 (2012). https://doi.org/10.1103/physrevb.86.115205
- K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind Green Photoluminescence in ZnO Phosphor Powders," J. Appl. Phys., 79 [10] 7983-90 (1996). https://doi.org/10.1063/1.362349
- E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, "Effect of the Variation of Film Thickness on the Structural and Optical Properties of ZnO Thin Films Deposited on Sapphire Substrate Using PLD," Appl. Surf. Sci., 186 [1] 474-76 (2002). https://doi.org/10.1016/S0169-4332(01)00746-2
Cited by
- Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00152-2