DOI QR코드

DOI QR Code

Effective Oxygen-Defect Passivation in ZnO Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide

  • Wang, Yue (Department of Materials Science and Engineering, Yonsei University) ;
  • Kang, Kyung-Mun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Minjae (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2019.04.30
  • Accepted : 2019.05.14
  • Published : 2019.05.31

Abstract

The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H2O2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H2O2 as the oxygen precursor instead of a conventional oxygen source such as H2O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H2O2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.

Keywords

References

  1. H. Saarenpaa, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, "Aluminum Doped Zinc Oxide Films Grown by Atomic Layer Deposition for Organic Photovoltaic Devices," Sol. Energy Mater. Sol. Cells, 94 [8] 1379-83 (2010). https://doi.org/10.1016/j.solmat.2010.04.006
  2. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO Nanotube Based Dye-Sensitized Solar Cells," Nano Lett., 7 [8] 2183-87 (2007). https://doi.org/10.1021/nl070160+
  3. S.-H. K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, "Transparent and Photo-Stable ZnO Thin-Film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel," Adv. Mater., 21 [6] 678-82 (2009). https://doi.org/10.1002/adma.200801470
  4. J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, "p-Type ZnO Materials: Theory, Growth, Properties and Devices," Prog. Mater. Sci., 58 [6] 874-985 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.002
  5. S. Chu, G. P. Wang, W. H. Zhou, Y. P. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, "Electrically Pumped Waveguide Lasing from ZnO Nanowires," Nat. Nanotechnol., 6 506-10 (2011). https://doi.org/10.1038/nnano.2011.97
  6. R. Rooder, T. P. H. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, "Ultrafast Dynamics of Lasing Semiconductor Nanowires," Nano Lett., 15 [7] 4637-43 (2015). https://doi.org/10.1021/acs.nanolett.5b01271
  7. X. F. Pan, X. Liu, A, Bermak, and Z. Y. Fan, "Self-Gating Effect Induced Large Performance Improvement of ZnO Nanocomb Gas Sensors," ACS Nano, 7 [10] 9318-24 (2013). https://doi.org/10.1021/nn4040074
  8. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. A. Golberg, "Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors," Sensors, 9 [8] 504 (2009). https://doi.org/10.1109/JSEN.2009.2015016
  9. D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, "Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors," Adv. Mater., 26 [10] 1541-50 (2014). https://doi.org/10.1002/adma.201304363
  10. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Lett., 8 [5] 1501-5 (2008). https://doi.org/10.1021/nl080659j
  11. R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z. L. Wang, and C. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array," Adv. Fun. Mater., 25 [19] 2884-91 (2015). https://doi.org/10.1002/adfm.201500801
  12. Y. J. Choi and H. H. Park, "A Simple Approach to the Fabrication of Fluorine-Doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into the Growth Mode," J. Mater. Chem. C, 2 98-108 (2014). https://doi.org/10.1039/C3TC31478B
  13. F. Meng, S. Peng, G. Xu, Y. Wang, F. Ge, and F. Huang, "Optimizing the Discharge Voltage in Magnetron Sputter Deposition of High Quality Al-doped ZnO Thin Films," J. Vac. Sci. Technol., A, 33 [6] 061503 (2015). https://doi.org/10.1116/1.4927437
  14. J. Rousset, E. Saucedo, and D. Lincot, "Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications," Chem. Mater., 21 [3] 534-40 (2009). https://doi.org/10.1021/cm802765c
  15. H. Akazawa, "Modification of Transparent Conductive ZnO and Ga-doped ZnO Films by Irradiation with Electron Cyclotron Resonance Argon Plasma", J. Vac. Sci. Technol. A, 29 031304 (2011). https://doi.org/10.1116/1.3571603
  16. D. J. Lee, K. J. Kim, S. H. Kim, J. Y. Kwon, J. Xu, and K. B. Kim, "Atomic Layer Deposition of Ti-doped ZnO Films with Enhanced Electron Mobility," J. Mater. Chem. C, 1 4761-69 (2013). https://doi.org/10.1039/c3tc30469h
  17. A. Janotti and C. G. Van de Walle, "Native Point Defects in ZnO," Phys. Rev. B, 76 [16] 165202 (2007). https://doi.org/10.1103/physrevb.76.165202
  18. C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type Doping Difficulty in ZnO: The Impurity Perspective," Phys. Rev. B, 66 [7] 073202 (2002). https://doi.org/10.1103/physrevb.66.073202
  19. R. Vidya, P. Ravindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, "Energetics of Intrinsic Defects and Their Complexes in ZnO Investigated by Density Functional Calculations," Phys. Rev. B, 83 [4] 045206 (2011). https://doi.org/10.1103/physrevb.83.045206
  20. Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, "Control of Conductivity Type in Undoped ZnO Thin Films Grown by Metalorganic Vapor Phase Epitaxy," J. Appl. Phys., 95 [11] 6268-72 (2004). https://doi.org/10.1063/1.1713040
  21. C. F. Yu, C. W. Sung, S. H. Chen, and S. J. Sun, "Relationship between the Photoluminescence and Conductivity of Undoped ZnO Thin Films Grown with Various Oxygen Pressures," Appl. Surf. Sci., 256 [3] 792-96 (2009). https://doi.org/10.1016/j.apsusc.2009.08.061
  22. G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, "Control of p- and n-type Conductivity in Sputter Deposition of Undoped ZnO," Appl. Phys. Lett., 80 [7] 1195 (2002). https://doi.org/10.1063/1.1449528
  23. A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida, "p-type Conduction in Codoped ZnO Thin Films," J. Appl. Phys., 93 [1] 396 (2003). https://doi.org/10.1063/1.1527210
  24. X. Liu, X. Wu, H. Cao, and R. P. H. Chang, "Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma-Enhanced Chemical Vapor Deposition," J. Appl. Phys., 95 [6] 3141-47 (2004). https://doi.org/10.1063/1.1646440
  25. L. Cui, H. Y. Zhang, G. G. Wang, F. X. Yang, X. P Kuang, R. Sun, and J. C. Han, "Effect of Annealing Temperature and Annealing Atmosphere on the Structure and Optical Properties of ZnO Thin Films on Sapphire (0 0 0 1) Substrates by Magnetron Sputtering," Appl. Surf. Sci., 258 [7] 2479-85 (2012). https://doi.org/10.1016/j.apsusc.2011.10.076
  26. Y. C. Cheng, Y. S. Kuo, Y. H. Li, J. J. Shyue, and M. J. Chen, "Stable p-type ZnO Films Grown by Atomic Layer Deposition on GaAs Substrates and Treated by Post- Deposition Rapid Thermal Annealing," Thin Solid Films, 519 [16] 5558-61 (2011). https://doi.org/10.1016/j.tsf.2011.02.072
  27. D. M. King, S. I. Johnson, J. Li, X. Du, X. Liang, and A. W. Weimer, "Atomic Layer Deposition of Quantum-Confined ZnO Nanostructures," Nanotechnology, 20 [19] 195401 (2009). https://doi.org/10.1088/0957-4484/20/19/195401
  28. K. J. Qian, S. Chen, B. Zhu, L. Chen, S. J. Ding, H. L. Lu, Q. Q. Sun, D. W. Zhang, and Z. Chen, "Atomic Layer Deposition of ZnO on Thermal $SiO_2$ and Si Surfaces Using $N_2$-Diluted Diethylzinc and $H_2O_2$ Precursors," Appl. Surf. Sci., 258 [10] 4657-66 (2012). https://doi.org/10.1016/j.apsusc.2012.01.054
  29. J. Aarik, A. Aisla, T. Uustare, M. Ritala, and L. Markku, "Titanium Isopropoxide as a Precursor for Atomic Layer Deposition: Characterization of Titanium Dioxide Growth Process," Appl. Surf. Sci., 161 [3-4] 385-95 (2000). https://doi.org/10.1016/S0169-4332(00)00274-9
  30. Y. Wang, K. M. Kang, M. Kim, and H. H. Park, "Oxygen Vacancy-Passivated ZnO Thin Film Formed by Atomic Layer Deposition Using $H_2O_2$," J. Vac. Sci. Technol., A, 36 [3] 031504 (2018). https://doi.org/10.1116/1.5012022
  31. Y. Wang, K. M. Kang, M. Kim, and H. H. Park, "Low Temperature Method to Passivate Oxygen Vacancies in Un-doped ZnO Films Using Atomic Layer Deposition," Thin Solid Films, 660 852-58 (2018). https://doi.org/10.1016/j.tsf.2018.03.003
  32. R. W. Johnson, A. Hultqvist, and S. F. Bent, "A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications," Mater. Today, 17 [5] 236-46 (2014). https://doi.org/10.1016/j.mattod.2014.04.026
  33. S. H. K. Park and Y. E. Lee, "Controlling Preferred Orientation of ZnO Thin Films by Atomic Layer Deposition," J. Mater. Sci., 39 [6] 2195-97 (2004). https://doi.org/10.1023/B:JMSC.0000017786.81842.ae
  34. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, "Control of Preferred Orientation for $ZnO_x$ Films: Control of Self-Texture," J. Cryst. Growth, 130 [1-2] 269-79 (1993). https://doi.org/10.1016/0022-0248(93)90861-P
  35. S.-Y. Pung, K.-L. Choy, X. H. Hou, and C. X. Shan, "Preferential Growth of ZnO Thin Films by the Atomic Layer Deposition Technique," Nanotechnology, 19 [43] 435609 (2008). https://doi.org/10.1088/0957-4484/19/43/435609
  36. D. M. King, X. H. Du, A. S. Cavanagh, and A. W. Weimer, "Quantum Confinement in Amorphous $TiO_2$ Films Studied via Atomic Layer Deposition," Nanotechnology, 19 [44] 445401 (2008). https://doi.org/10.1088/0957-4484/19/44/445401
  37. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, "A Comparative Analysis of Deep Level Emission in ZnO Layers Deposited by Various Methods," J. Appl. Phys., 105 [1] 013502 (2009). https://doi.org/10.1063/1.3054175
  38. C. Ton-That, L. Weston, and M. R. Phillips, "Characteristics of Point Defects in the Green Luminescence from Znand O-rich ZnO," Phys. Rev. B, 86 [11] 115205 (2012). https://doi.org/10.1103/physrevb.86.115205
  39. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind Green Photoluminescence in ZnO Phosphor Powders," J. Appl. Phys., 79 [10] 7983-90 (1996). https://doi.org/10.1063/1.362349
  40. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, "Effect of the Variation of Film Thickness on the Structural and Optical Properties of ZnO Thin Films Deposited on Sapphire Substrate Using PLD," Appl. Surf. Sci., 186 [1] 474-76 (2002). https://doi.org/10.1016/S0169-4332(01)00746-2

Cited by

  1. Energy materials for energy conversion and storage: focus on research conducted in Korea vol.58, pp.6, 2019, https://doi.org/10.1007/s43207-021-00152-2