Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.3.11

Effective Oxygen-Defect Passivation in ZnO Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide  

Wang, Yue (Department of Materials Science and Engineering, Yonsei University)
Kang, Kyung-Mun (Department of Materials Science and Engineering, Yonsei University)
Kim, Minjae (Department of Materials Science and Engineering, Yonsei University)
Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Abstract
The intrinsic oxygen-vacancy defects in ZnO have prevented the preparation of p-type ZnO with high carrier concentration. Therefore, in this work, the effect of the concentration of H2O2 (used as an oxygen source) on the oxygen-vacancy concentration in ZnO prepared by atomic layer deposition was investigated. The results indicated that the oxygen-vacancy concentration in the ZnO film decreased by the oxygen-rich growth conditions when using H2O2 as the oxygen precursor instead of a conventional oxygen source such as H2O. The suppression of oxygen vacancies decreased the carrier concentration and increased the resistivity. Moreover, the growth orientation changed to the (002) plane, from the combined (100) and (002) planes, with the increase in H2O2 concentration. The passivation of oxygen-vacancy defects in ZnO can contribute to the preparation of p-type ZnO.
Keywords
ZnO; ALD; $H_2O_2 $; Oxygen vacancy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Janotti and C. G. Van de Walle, "Native Point Defects in ZnO," Phys. Rev. B, 76 [16] 165202 (2007).   DOI
2 C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type Doping Difficulty in ZnO: The Impurity Perspective," Phys. Rev. B, 66 [7] 073202 (2002).   DOI
3 R. Vidya, P. Ravindran, H. Fjellvag, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, "Energetics of Intrinsic Defects and Their Complexes in ZnO Investigated by Density Functional Calculations," Phys. Rev. B, 83 [4] 045206 (2011).   DOI
4 Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, "Control of Conductivity Type in Undoped ZnO Thin Films Grown by Metalorganic Vapor Phase Epitaxy," J. Appl. Phys., 95 [11] 6268-72 (2004).   DOI
5 C. F. Yu, C. W. Sung, S. H. Chen, and S. J. Sun, "Relationship between the Photoluminescence and Conductivity of Undoped ZnO Thin Films Grown with Various Oxygen Pressures," Appl. Surf. Sci., 256 [3] 792-96 (2009).   DOI
6 G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, and R. T. Williams, "Control of p- and n-type Conductivity in Sputter Deposition of Undoped ZnO," Appl. Phys. Lett., 80 [7] 1195 (2002).   DOI
7 A. V. Singh, R. M. Mehra, A. Wakahara, and A. Yoshida, "p-type Conduction in Codoped ZnO Thin Films," J. Appl. Phys., 93 [1] 396 (2003).   DOI
8 X. Liu, X. Wu, H. Cao, and R. P. H. Chang, "Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma-Enhanced Chemical Vapor Deposition," J. Appl. Phys., 95 [6] 3141-47 (2004).   DOI
9 Y. C. Cheng, Y. S. Kuo, Y. H. Li, J. J. Shyue, and M. J. Chen, "Stable p-type ZnO Films Grown by Atomic Layer Deposition on GaAs Substrates and Treated by Post- Deposition Rapid Thermal Annealing," Thin Solid Films, 519 [16] 5558-61 (2011).   DOI
10 L. Cui, H. Y. Zhang, G. G. Wang, F. X. Yang, X. P Kuang, R. Sun, and J. C. Han, "Effect of Annealing Temperature and Annealing Atmosphere on the Structure and Optical Properties of ZnO Thin Films on Sapphire (0 0 0 1) Substrates by Magnetron Sputtering," Appl. Surf. Sci., 258 [7] 2479-85 (2012).   DOI
11 D. M. King, S. I. Johnson, J. Li, X. Du, X. Liang, and A. W. Weimer, "Atomic Layer Deposition of Quantum-Confined ZnO Nanostructures," Nanotechnology, 20 [19] 195401 (2009).   DOI
12 K. J. Qian, S. Chen, B. Zhu, L. Chen, S. J. Ding, H. L. Lu, Q. Q. Sun, D. W. Zhang, and Z. Chen, "Atomic Layer Deposition of ZnO on Thermal $SiO_2$ and Si Surfaces Using $N_2$-Diluted Diethylzinc and $H_2O_2$ Precursors," Appl. Surf. Sci., 258 [10] 4657-66 (2012).   DOI
13 J. Aarik, A. Aisla, T. Uustare, M. Ritala, and L. Markku, "Titanium Isopropoxide as a Precursor for Atomic Layer Deposition: Characterization of Titanium Dioxide Growth Process," Appl. Surf. Sci., 161 [3-4] 385-95 (2000).   DOI
14 Y. Wang, K. M. Kang, M. Kim, and H. H. Park, "Oxygen Vacancy-Passivated ZnO Thin Film Formed by Atomic Layer Deposition Using $H_2O_2$," J. Vac. Sci. Technol., A, 36 [3] 031504 (2018).   DOI
15 Y. Wang, K. M. Kang, M. Kim, and H. H. Park, "Low Temperature Method to Passivate Oxygen Vacancies in Un-doped ZnO Films Using Atomic Layer Deposition," Thin Solid Films, 660 852-58 (2018).   DOI
16 J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, "p-Type ZnO Materials: Theory, Growth, Properties and Devices," Prog. Mater. Sci., 58 [6] 874-985 (2013).   DOI
17 H. Saarenpaa, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, "Aluminum Doped Zinc Oxide Films Grown by Atomic Layer Deposition for Organic Photovoltaic Devices," Sol. Energy Mater. Sol. Cells, 94 [8] 1379-83 (2010).   DOI
18 A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, "ZnO Nanotube Based Dye-Sensitized Solar Cells," Nano Lett., 7 [8] 2183-87 (2007).   DOI
19 S.-H. K. Park, C.-S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.-I. Lee, K. Lee, M. S. Oh, and S. Im, "Transparent and Photo-Stable ZnO Thin-Film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel," Adv. Mater., 21 [6] 678-82 (2009).   DOI
20 R. W. Johnson, A. Hultqvist, and S. F. Bent, "A Brief Review of Atomic Layer Deposition: from Fundamentals to Applications," Mater. Today, 17 [5] 236-46 (2014).   DOI
21 S. H. K. Park and Y. E. Lee, "Controlling Preferred Orientation of ZnO Thin Films by Atomic Layer Deposition," J. Mater. Sci., 39 [6] 2195-97 (2004).   DOI
22 N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, "Control of Preferred Orientation for $ZnO_x$ Films: Control of Self-Texture," J. Cryst. Growth, 130 [1-2] 269-79 (1993).   DOI
23 S.-Y. Pung, K.-L. Choy, X. H. Hou, and C. X. Shan, "Preferential Growth of ZnO Thin Films by the Atomic Layer Deposition Technique," Nanotechnology, 19 [43] 435609 (2008).   DOI
24 D. M. King, X. H. Du, A. S. Cavanagh, and A. W. Weimer, "Quantum Confinement in Amorphous $TiO_2$ Films Studied via Atomic Layer Deposition," Nanotechnology, 19 [44] 445401 (2008).   DOI
25 C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, "A Comparative Analysis of Deep Level Emission in ZnO Layers Deposited by Various Methods," J. Appl. Phys., 105 [1] 013502 (2009).   DOI
26 C. Ton-That, L. Weston, and M. R. Phillips, "Characteristics of Point Defects in the Green Luminescence from Znand O-rich ZnO," Phys. Rev. B, 86 [11] 115205 (2012).   DOI
27 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, "Mechanisms behind Green Photoluminescence in ZnO Phosphor Powders," J. Appl. Phys., 79 [10] 7983-90 (1996).   DOI
28 X. F. Pan, X. Liu, A, Bermak, and Z. Y. Fan, "Self-Gating Effect Induced Large Performance Improvement of ZnO Nanocomb Gas Sensors," ACS Nano, 7 [10] 9318-24 (2013).   DOI
29 E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim, and S. Y. Lee, "Effect of the Variation of Film Thickness on the Structural and Optical Properties of ZnO Thin Films Deposited on Sapphire Substrate Using PLD," Appl. Surf. Sci., 186 [1] 474-76 (2002).   DOI
30 R. Rooder, T. P. H. Sidiropoulos, C. Tessarek, S. Christiansen, R. F. Oulton, and C. Ronning, "Ultrafast Dynamics of Lasing Semiconductor Nanowires," Nano Lett., 15 [7] 4637-43 (2015).   DOI
31 T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. A. Golberg, "Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors," Sensors, 9 [8] 504 (2009).   DOI
32 D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y. K. Mishra, and R. Adelung, "Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors," Adv. Mater., 26 [10] 1541-50 (2014).   DOI
33 S. Chu, G. P. Wang, W. H. Zhou, Y. P. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu, "Electrically Pumped Waveguide Lasing from ZnO Nanowires," Nat. Nanotechnol., 6 506-10 (2011).   DOI
34 Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Lett., 8 [5] 1501-5 (2008).   DOI
35 R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z. L. Wang, and C. Pan, "Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array," Adv. Fun. Mater., 25 [19] 2884-91 (2015).   DOI
36 Y. J. Choi and H. H. Park, "A Simple Approach to the Fabrication of Fluorine-Doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into the Growth Mode," J. Mater. Chem. C, 2 98-108 (2014).   DOI
37 F. Meng, S. Peng, G. Xu, Y. Wang, F. Ge, and F. Huang, "Optimizing the Discharge Voltage in Magnetron Sputter Deposition of High Quality Al-doped ZnO Thin Films," J. Vac. Sci. Technol., A, 33 [6] 061503 (2015).   DOI
38 D. J. Lee, K. J. Kim, S. H. Kim, J. Y. Kwon, J. Xu, and K. B. Kim, "Atomic Layer Deposition of Ti-doped ZnO Films with Enhanced Electron Mobility," J. Mater. Chem. C, 1 4761-69 (2013).   DOI
39 J. Rousset, E. Saucedo, and D. Lincot, "Extrinsic Doping of Electrodeposited Zinc Oxide Films by Chlorine for Transparent Conductive Oxide Applications," Chem. Mater., 21 [3] 534-40 (2009).   DOI
40 H. Akazawa, "Modification of Transparent Conductive ZnO and Ga-doped ZnO Films by Irradiation with Electron Cyclotron Resonance Argon Plasma", J. Vac. Sci. Technol. A, 29 031304 (2011).   DOI