• Title/Summary/Keyword: $N_s$

Search Result 28,958, Processing Time 0.048 seconds

DFT Study for the Thermodynamic Stability and Binding Energeticsof SnOn, SnO2n, SnO3n (n = 1~4) (SnOn, SnO2n, SnO3n (n = 1~4)의 열역학적 안정성과 결합에너지에 대한 DFT 이론 연구)

  • Kim, Si-Jo;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.512-520
    • /
    • 2009
  • The theoretical calculations for $S_nO_n,\;S_nO_{2n},\;S_nO_{3n}\;(n\;=\;1{\sim}4)$ have been considered at the B3LYP level of theory with various basis sets. The optimized geometries, harmonic vibrational frequencies, and binding energies are evaluated to elucidate the thermodynamic stability and spectroscopic properties. The harmonic vibrational frequencies for the molecules considered in this study show all real numbers implying true minima. The binding energies due to increasing of $S_nO_n,\;S_nO_{2n},\;S_nO_{3n}$ monomers are calculated at the MP2/6-311G** level of theory. For $S_nO_n\;(n\;=\;1{\sim}4)$, the binding energy difference is about 20∼25 kcal/mol by adding SO monomer. For $SO_2\;and\;SO_3\;(n\;=\;1{\sim}4)$, the binding energy differences are relatively small by comparing to $S_nO_n$.

SUMMING AND DOMINATED OPERATORS ON A CARTESIAN PRODUCT OF c0 (𝓧) SPACES

  • Badea, Gabriela;Popa, Dumitru
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.967-986
    • /
    • 2017
  • We give the necessary condition for an operator defined on a cartesian product of $c_0(\mathcal{X})$ spaces to be summing or dominated and we show that for the multiplication operators this condition is also sufficient. By using these results, we show that ${\Pi}_s(c_0,{\ldots},c_0;c_0)$ contains a copy of $l_s(l^m_2{\mid}m{\in}\mathbb{N})$ for s > 2 or a copy of $1_s(l^m_1{\mid}{\in}\mathbb{N})$, for any $l{\leq}S$ < ${\infty}$. Also ${\Delta}_{s_1,{\ldots},s_n}(c_0,{\ldots},c_0;c_0)$ contains a copy of $l_{{\upsilon}_n(s_1,{\ldots},s_n)}$ if ${\upsilon}_n(s_1,{\ldots},s_n){\leq}2$ or a copy of $l_{{\upsilon}_n(s_1,{\ldots},s_n)}(l^m_2{\mid}m{\in}\mathbb{N})$ if 2 < ${\upsilon}_n(s_1,{\ldots},s_n)$, where ${\frac{1}{{\upsilon}_n(s_1,{\ldots},s_n})}={\frac{1}{s_1}}+{\cdots}+{\frac{1}{s_n}}$. We find also the necessary and sufficient conditions for bilinear operators induced by some method of summability to be 1-summing or 2-dominated.

Synthesis and Characterization of Square Planar Mixed-Ligand Complexes (II) : Electrophilic and Nucleophilic Reaction of M(S-S)(N-N) Type Complexes with Ni(II), Pd(II), and Pt(II) (평면사각형 혼합 리간드 착물의 합성과 그 특성 (제 2 보) : Ni(II), Pd(II) 및 Pt(II)의 M(S-S)(N-N)형 착물의 친전자성 및 친핵성 반응)

  • OH Sang Oh;Chung Duck Young
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.81-86
    • /
    • 1992
  • The electrophilic and nucleophilic reactions of M(S-S,ph)(N-N,H) (M = Ni(II), Pd(II), Pt(II); (S-S,ph) = 1,2-diphenylethylenedithiolate; (N-N,H)=1,10-phenanthroline) complexes have been investigated. Reaction with norbornadiene depended upon the back donating ability of the central metal ion and produced 2,5-dithia-3,4-diphenyl-tricyclo[4,4,1,0]-undeca-3,8-diene. In the reaction with methyl iodide, the effect of cleavage of (N-N,H) ligand affected the yield of methylated $M(S-S,ph)_2$ product. The structure of the thermolysis product, ${\alpha},{\alpha}{\prime}$-bismethylthiostibene $(CH_3S-SCH_3,ph)$ of methylated complexes indicates that the main product of the nucleophilic reaction is $M(CH_3S-SCH_3,ph)(S-S,ph)$. We have synthesized a new mixed-ligand complex M(S-S,CN)(N-N,H)((S-S,CN) = 1,2-dicyanoethylenedithiolate) through the nucleophilic reaction of ligand.

  • PDF

A Study on the Photo-Conductive Characteristics of (p)ZnTe/(n)Si Solar Cell and (n)CdS-(p)ZnTe/(n)Si Poly-Junction Thin Film ((p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막의 광도전 특성에 관한 연구)

  • Jhoun, Choon-Saing;Kim, Wan-Tae;Huh, Chang-Su
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.74-83
    • /
    • 1991
  • In this study, the (p)ZnTe/(n)Si solar cell and (n)CdS-(p)ZnTe/(n)Si poly-junction thin film are fabricated by vaccum deposition method at the substrate temperature of $200{\pm}1^{\circ}C$ and then their electrical properties are investigated and compared each other. The test results from the (p)ZnTe/(n)Si solar cell the (n)CdS-(p)ZnTe/(n)Si poly-junction thin fiim under the irradiation of solar energy $100[mW/cm^2]$ are as follows; Short circuit current$[mA/cm^2]$ (p)ZnTe/(n)Si:28 (n)CdS-(p)ZnTe/(n)Si:6.5 Open circuit voltage[mV] (p)ZnTe/(n)Si:450 (n)CdS-(p)ZnTe/(n)Si:250 Fill factor (p)ZnTe/(n)Si:0.65 (n)CdS-(p)ZnTe/(n)Si:0.27 Efficiency[%] (p)ZnTe/(n)Si:8.19 (n)CdS-(p)ZnTe/(n)Si:2.3 The thin film characteristics can be improved by annealing. But the (p)ZnTe/(n)Si solar cell are deteriorated at temperatures above $470^{\circ}C$ for annealing time longer than 15[min] and the (n)CdS-(p)ZnTe/(n)Si thin film are deteriorated at temperature about $580^{\circ}C$ for longer than 15[min]. It is found that the sheet resistance decreases with the increase of annealing temperature.

  • PDF

The Line n-sigraph of a Symmetric n-sigraph-V

  • Reddy, P. Siva Kota;Nagaraja, K.M.;Geetha, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • An n-tuple ($a_1,a_2,{\ldots},a_n$) is symmetric, if $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$. Let $H_n$ = {$(a_1,a_2,{\ldots},a_n)$ ; $a_k$ ${\in}$ {+,-}, $a_k$ = $a_{n-k+1}$, $1{\leq}k{\leq}n$} be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n$ = (G,${\sigma}$) ($S_n$ = (G,${\mu}$)), where G = (V,E) is a graph called the underlying graph of $S_n$ and ${\sigma}$:E ${\rightarrow}H_n({\mu}:V{\rightarrow}H_n)$ is a function. The restricted super line graph of index r of a graph G, denoted by $\mathcal{R}\mathcal{L}_r$(G). The vertices of $\mathcal{R}\mathcal{L}_r$(G) are the r-subsets of E(G) and two vertices P = ${p_1,p_2,{\ldots},p_r}$ and Q = ${q_1,q_2,{\ldots},q_r}$ are adjacent if there exists exactly one pair of edges, say $p_i$ and $q_j$, where $1{\leq}i$, $j{\leq}r$, that are adjacent edges in G. Analogously, one can define the restricted super line symmetric n-sigraph of index r of a symmetric n-sigraph $S_n$ = (G,${\sigma}$) as a symmetric n-sigraph $\mathcal{R}\mathcal{L}_r$($S_n$) = ($\mathcal{R}\mathcal{L}_r(G)$, ${\sigma}$'), where $\mathcal{R}\mathcal{L}_r(G)$ is the underlying graph of $\mathcal{R}\mathcal{L}_r(S_n)$, where for any edge PQ in $\mathcal{R}\mathcal{L}_r(S_n)$, ${\sigma}^{\prime}(PQ)$=${\sigma}(P){\sigma}(Q)$. It is shown that for any symmetric n-sigraph $S_n$, its $\mathcal{R}\mathcal{L}_r(S_n)$ is i-balanced and we offer a structural characterization of super line symmetric n-sigraphs of index r. Further, we characterize symmetric n-sigraphs $S_n$ for which $\mathcal{R}\mathcal{L}_r(S_n)$~$\mathcal{L}_r(S_n)$ and $$\mathcal{R}\mathcal{L}_r(S_n){\sim_=}\mathcal{L}_r(S_n)$$, where ~ and $$\sim_=$$ denotes switching equivalence and isomorphism and $\mathcal{R}\mathcal{L}_r(S_n)$ and $\mathcal{L}_r(S_n)$ are denotes the restricted super line symmetric n-sigraph of index r and super line symmetric n-sigraph of index r of $S_n$ respectively.

THE FRACTIONAL TOTIENT FUNCTION AND STURMIAN DIRICHLET SERIES

  • Kwon, DoYong
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • Let ${\alpha}$ > 0 be a real number and $(s_{\alpha}(n))_{n{\geq}1}$ be the lexicographically greatest Sturmian word of slope ${\alpha}$. We investigate Dirichlet series of the form ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-s}$. To do this, a generalization of Euler's totient function is required. For a real ${\alpha}$ > 0 and a positive integer n, an arithmetic function ${\varphi}{\alpha}(n)$ is defined to be the number of positive integers m for which gcd(m, n) = 1 and 0 < m/n < ${\alpha}$. Under a condition Re(s) > 1, this paper establishes an identity ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-S}=1+{\sum}^{\infty}_{n=1}{\varphi}_{\alpha}(n)({\zeta}(s)-{\zeta}(s,1+n^{-1}))n^{-s}$.

NONLINEAR MIXED *-JORDAN TYPE n-DERIVATIONS ON *-ALGEBRAS

  • Raof Ahmad Bhat;Abbas Hussain Shikeh;Mohammad Aslam Siddeeque
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.331-343
    • /
    • 2024
  • Let ℜ be a *-algebra with unity I and a nontrivial projection P1. In this paper, we show that under certain restrictions if a map ψ : ℜ → ℜ satisfies $$\Psi(S_1{\diamond}S_2{\cdot}{\cdot}{\cdot}{\diamond}S_{n-1}{\bullet}S_n)=\sum_{k=1}^nS_1{\diamond}S_2{\diamond}{\cdot}{\cdot}{\cdot}{\diamond}S_{k-1}{\diamond}{\Psi}(S_k){\diamond}S_{k+1}{\diamond}{\cdot}{\cdot}{\cdot}{\diamond}S_{n-1}{\bullet}S_n$$ for all Sn-2, Sn-1, Sn ∈ ℜ and Si = I for all i ∈ {1, 2, . . . , n - 3}, where n ≥ 3, then ψ is an additive *-derivation.

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL On,2d(q)

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.349-358
    • /
    • 2017
  • The cyclic group $C_n={\langle}(12{\cdots}n){\rangle}$ acts on the set $(^{[n]}_k)$ of all k-subsets of [n]. In this action of $C_n$ the number of orbits of size d, for d | n, is $$O^{n,k}_d={\frac{1}{d}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})(^{n/s}_{k/s})$$. Stanton and White [6] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)={\frac{1}{[d]_{q^{n/d}}}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})[^{n/s}_{k/s}]_{q^s}$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O^{n,2}_d(q)$.

CONVERGENCE THEOREMS OF THE ITERATIVE SEQUENCES FOR NONEXPANSIVE MAPPINGS

  • Kang, Jung-Im;Cho, Yeol-Je;Zhou, Hai-Yun
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.321-328
    • /
    • 2004
  • In this paper, we will prove the following: Let D be a nonempty of a normed linear space X and T : D -> X be a nonexpansive mapping. Let ${x_n}$ be a sequence in D and ${t_n}$, ${s_n}$ be real sequences such that (i) $0\;{\leq}\;t_n\;{\leq}\;t\;<\;1\;and\;{\sum_{n=1}}^{\infty}\;t_n\;=\;{\infty},\;(ii)\;(a)\;0\;{\leq}\;s_n\;{\leq}\;1,\;s_n\;->\;0\;as\;n\;->\;{\infty}\;and\;{\sum_{n=1}}^{\infty}\;t_ns_n\;<\;{\infty}\;or\;(b)\;s_n\;=\;s\;for\;all\;n\;{\geq}\;1\;and\;s\;{\in}\;[0,1),\;(iii)\;x_{n+1}\;=\;(1-t_n)x_n+t_nT(s_nTx_n+(1-s_n)x_n)\;for\;all\;n\;{\geq}\;1.$ Then, if the sequence {x_n} is bounded, then $lim_{n->\infty}\;$\mid$$\mid$x_n-Tx_n$\mid$$\mid$\;=\;0$. This result improves and complements a result of Deng [2]. Furthermore, we will show that certain conditions on D, X and T guarantee the weak and strong convergence of the Ishikawa iterative sequence to a fixed point of T.

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$

  • Lee, Jae-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.455-462
    • /
    • 2012
  • The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.