Browse > Article
http://dx.doi.org/10.5012/jkcs.2009.53.5.512

DFT Study for the Thermodynamic Stability and Binding Energeticsof SnOn, SnO2n, SnO3n (n = 1~4)  

Kim, Si-Jo (Department of Chemistry, HanNam University)
Kim, Seung-Joon (Department of Chemistry, HanNam University)
Publication Information
Abstract
The theoretical calculations for $S_nO_n,\;S_nO_{2n},\;S_nO_{3n}\;(n\;=\;1{\sim}4)$ have been considered at the B3LYP level of theory with various basis sets. The optimized geometries, harmonic vibrational frequencies, and binding energies are evaluated to elucidate the thermodynamic stability and spectroscopic properties. The harmonic vibrational frequencies for the molecules considered in this study show all real numbers implying true minima. The binding energies due to increasing of $S_nO_n,\;S_nO_{2n},\;S_nO_{3n}$ monomers are calculated at the MP2/6-311G** level of theory. For $S_nO_n\;(n\;=\;1{\sim}4)$, the binding energy difference is about 20∼25 kcal/mol by adding SO monomer. For $SO_2\;and\;SO_3\;(n\;=\;1{\sim}4)$, the binding energy differences are relatively small by comparing to $S_nO_n$.
Keywords
$S_nO_n$; $S_nO_{2n}$; $S_nO_{3n}$; DFT; HDEM; Binding energy;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Groves, C.; Lewars, E. THEOCHEM. 2000, 530, 265   DOI   ScienceOn
2 Frapper, G. New J. Chem. 2001, 25, 440   DOI
3 Knappenberger, K. L.; Castleman, A. W. J. Chem. Phys. 2004, 121, 3540   DOI   ScienceOn
4 Givan, A.; Loewenschuss, A.; Nielsen, C. J.; Rozenberg, M. J. Mol. Struct. 2007, 830, 21   DOI   ScienceOn
5 A. D. Becke, J. Chem. Phys. 1993, 98, 5648   DOI   ScienceOn
6 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785
7 Boys, S. F.; Bernardi, F.; Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553   DOI   ScienceOn
8 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.;Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, Revision A; Gaussian, Inc.: Pittsburgh, PA, 2003
9 Tarakeshwar, P.; Choi, H. S.; Lee, S. J.; Lee, J. Y.;Kim, K. S.; Ha, T.; Jang, J. H.; Lee, J. G.; Lee, H. J. Chem. Phys. 1999, 111, 5838   DOI
10 Kim, S. J. ; Seo, H. I.; Boo, B. H. Molecular Physics, 2009, 107, 1261   DOI   ScienceOn
11 Berthe-Gaujac, N.; Jean, Y.; Volatron, F. Chem. Phys. Lett. 1995, 243, 165   DOI   ScienceOn
12 Li, Q.S.; Wang, L. J.; Xu, W. G. Theor. Chem. Acc. 2000, 104, 67   DOI   ScienceOn
13 McKee, M. L. J. Phys. Chem. 1990, 94, 8553   DOI
14 Taleb-Bendiab, A.; Hillig II, K. W.; Kuczkowski, R. L. J. Chem. Phys. 1991, 94, 6956   DOI
15 Mckee, M. L. J. Phys. Chem. 1996, 100, 3473   DOI   ScienceOn
16 Li, W. K.; Mckee, M. L. J. Phys. Chem. A. 1997, 101, 9778   DOI   ScienceOn