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CONSTRUCTIVE PROOF FOR THE POSITIVITY OF

THE ORBIT POLYNOMIAL On,2
d (q)

Jaejin Lee

Abstract. The cyclic group Cn = 〈(12 · · ·n)〉 acts on the set
(
[n]
k

)
of all k-subsets of [n]. In this action of Cn the number of orbits of
size d, for d | n, is

On,k
d =

1

d

∑
n
d |s|n

µ

(
ds

n

)(
n/s

k/s

)
.

Stanton and White [6] generalized the above identity to construct
the orbit polynomials

On,k
d (q) =

1

[d]qn/d

∑
n
d |s|n

µ

(
ds

n

)[
n/s
k/s

]
qs

and conjectured that On,k
d (q) have non-negative coefficients. In this

paper we give a constructive proof for the positivity of coefficients
of the orbit polynomial On,2

d (q).

1. Introduction

When n is a positive integer, we write as [n] = {1, 2, . . . , n}. Let Cn
be the cyclic group generated by a permutation σ = (12 · · ·n). If

(
[n]
k

)
is

the set of all k-subsets of [n], Cn acts on
(
[n]
k

)
via

(τ, {x1, x2, . . . , xk}) 7→ {xτ(1), xτ(2), . . . , xτ(k)}.
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The number of orbits in this action of Cn is given

(1) On,k =
1

n

∑
d|gcd(n,k)

ϕ(d)

(
n/d

k/d

)
,

and the number of orbits of size d, for d | n, is

(2) On,k
d =

1

d

∑
n
d
|s|n

µ

(
ds

n

)(
n/s

k/s

)
.

Here ϕ is the Euler phi-function and µ is the Möbius function. In
preprint [6] Stanton and White constructed the orbit polynomialsOn,k

d (q),
a q-version of (2), and conjectured the following.

Conjecture 1.1. Fix d | n, and any non-negative integer k. Poly-
nomials

On,k
d (q) =

1

[d]qn/d

∑
n
d
|s|n

µ

(
ds

n

)[
n/s
k/s

]
qs

have non-negative coefficients.

Here [n]q = 1 + q + · · ·+ qn−1, [n]!q = [1]q[2]q · · · [n]q and[
n
k

]
q

=
[n]!q

[k]!q[n− k]q!
.

Möbius inversion implies

(3)

[
n
k

]
q

=
∑
d|n

[d]qn/dO
n,k
d (q).

Andrews [1] and Haiman [3] independently verified the above conjecture
when (n, k) = 1. In [4] Reiner, Stanton and White defined the cyclic siev-
ing phenomenon, generalization of Stembridge’s q = −1 phenomenon [7],
and use it to prove several enumeration problems involving q-binomial
coefficients, non-crossing partitions, polygon dissections and some finite
field q-analogues. Drudge [2] has proven that On,k(q) =

∑
d|nO

n,k
d (q)

is the number of orbits of the Singer cycle on the k-dimensional sub-
spaces of an n-dimensional vector space over a field of order q. Recently
Sagan [5] gave combinatorial proofs for several theorems appeared in [4].

In this paper we give a new weight for each 2-subset in
(
[n]
2

)
, and show

that the sum of weights of all 2-subset in
(
[n]
2

)
is equal to the q-binomial
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coefficient

[
n
2

]
q

. This will give a combinatorial proof for the positivity

of coefficients of the orbit polynomial On,2
d (q). Finally we suggest a

strategy for the constructive proof of the positivity of coefficients of the
orbit polynomial On,k

d (q) for any positive integers n, k with (n, k) = 1.

2. Positivity for the orbit polynomial On,2
d (q)

In this section we write as ij = {i, j} for convention. We begin

with the recurrence relation of q-binomial coefficient

[
n
2

]
q

. Using the

recurrence relations[
n
k

]
q

= qk
[
n− 1
k

]
q

+

[
n− 1
k − 1

]
q

and[
n
k

]
q

=

[
n− 1
k

]
q

+ qn−k
[
n− 1
k − 1

]
q

several times, we get the following identity.

Proposition 2.1. Let n ≥ 2 be an integer. Then[
n+ 2

2

]
q

= q2
[
n
2

]
q

+ qn+2

[
n− 1

1

]
q

+ [n+ 2]q.

We now describe the representatives x of orbits in the action of of Cn
on
(
[n]
2

)
. In each orbit O under Cn we choose 1i ∈ O as the representative

of O, where

(4) 1 < i ≤ n

2
+ 1.

For example, if n = 10, all orbits are given with representatives un-
derlined as follows. Here a = 10.

O1 = 〈12〉 = {12, 23, 34, 45, 56, 67, 78, 89, 9a, 1a}
O2 = 〈13〉 = {13, 24, 35, 46, 57, 68, 79, 8a, 19, 2a}
O3 = 〈14〉 = {14, 25, 36, 47, 58, 69, 7a, 18, 29, 3a}
O4 = 〈15〉 = {15, 26, 37, 48, 59, 6a, 17, 28, 39, 4a}
O0 = 〈16〉 = {16, 27, 38, 49, 5a}.
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Let 1i be the representative of an orbit under Cn. We define the
weight wn(1i) as

(5) wn(1i) =

{
qn+2−2i if i = n

2
+ 1

qn+1−2i else.

The weights for the other elements than the representatives are given
using the weights of representatives in (5).

Assume first gcd(n, 2) = 1. Note that all orbits are of size n by (1)
and (2). If Oi = {xi1, xi2, . . . , xi(n−1), xin} is an orbit of size n with the
representative xi1 and with the action

xi1
σ−→ xi2

σ−→ · · · σ−→ xi(n−1)
σ−→ xin

σ−→ xi1,

we define

(6) wn(xij+1) = qwn(xij) for 1 ≤ j ≤ n− 1.

If gcd(n, 2) 6= 1, there is only one orbit of size n
2

and the other orbits
are of size n under the action of Cn. The weights for elements in an
orbit of size n are defined in the same way as (6). On the other hand,
if O0 = {x01, x02, . . . , x0n

2
} is the orbit of size n

2
with the representative

x01 and with the action

x01
σ−→ x02

σ−→ · · · σ−→ x0n
2

σ−→ x01,

we define

wn(x0j+1) = q2wn(x0j) for 1 ≤ j ≤ n

2
− 1.

Then the sum of weights of all elements in
(
[n]
2

)
is equal to the q-binomial

coefficient

[
n
2

]
q

as follows.

Theorem 2.2. Let n ≥ 2 be an integer and let Tn be the set of all
2-subsets of [n], i.e., Tn =

(
[n]
2

)
. If we set wn(Tn) =

∑
x∈Tn wn(x), then

we have

wn(Tn) =

[
n
2

]
q

.
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Proof. Computing wn(Tn) and

[
n
2

]
q

for n = 2, 3, 4, 5 directly, we

have

w2(T2) = 1 =

[
2
2

]
q

w3(T3) = 1 + q + q2 =

[
3
2

]
q

w4(T4) = 1 + q + 2q2 + q3 + q4 =

[
4
2

]
q

w5(T5) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 =

[
5
2

]
q

.

We only work out for n = 2` + 1. The proof for n = 2` can be given in
the same way with a little modification.

Suppose now n = 2` + 1 for some ` ∈ N and wn(Tn) =

[
n
2

]
q

. Since

gcd(n, 2) = gcd(n + 2, 2) = 1, all orbits under Cn are of size n and all
orbits under Cn+2 are of size n+ 2. Let

x11, x21, . . . , xs1

be all representatives of orbits in the action of Cn, where

s = |Tn|/|orbit| =
(
n

2

)
/n =

1

2
(n− 1).

On the other hand, if t is the number of orbits in the action of Cn+2,

t =

(
n+ 2

2

)
/(n+ 2) =

1

2
(n+ 1) = s+ 1.

Let
x11, x21, . . . , xs1, x(s+1)1

be all representatives of orbits in the action of Cn+2. Then all orbits
O1, O2, · · · , Os under the action of Cn are

(7)

O1 = {x11, x12, . . . , x1(n−1), x1n}
O2 = {x21, x22, . . . , x2(n−1), x2n}

...

Os = {xs1, xs2, . . . , xs(n−1), xsn}



354 Jaejin Lee

while

(8)

O′1 = {x11, x12, . . . , x1n, x1(n+1), x1(n+2)}
O′2 = {x21, x22, . . . , x2n, x2(n+1), x2(n+2)}

...

O′s = {xs1, xs2, . . . , xsn, xs(n+1), xs(n+2)}
O′s+1 = {x(s+1)1, x(s+1)2, . . . , x(s+1)n, x(s+1)(n+1), x(s+1)(n+2)}

are all orbits under Cn+2. Let x be the representative of an orbit under
the action of Cn. x can be also the representative of an orbit under the
action of Cn+2. In this case,

wn+2(x) = q2wn(x).

For example, x = 12 ∈
(
[n]
2

)
is the representative of an orbit under the

action of Cn. The weight of x is

wn(x) = qn+1−2·2 = qn−3.

Also, x = 12 can be considered in Tn+2 =
(
[n+2]

2

)
and the weight wn+2(x)

is

wn+2(x) = q(n+2)+1−2·2 = qn−1,

so that wn+2(x) = q2wn(x). Another 2-subset 23 = σ(12) is considered
as the element of Tn+2 as well as Tn. The weight of 23 is

wn(23) = qwn(12) and wn+2(23) = qwn+2(12)

so that wn+2(23) = q2wn(23). Using this relation we compute wn+2(Tn+2).
Let rn(q) be the sum of weights of representatives of all orbits of size n.
From (7) and assumption we have

wn(Tn) =
s∑
i=1

∑
x∈Oi

wn(x) =
s∑
i=1

wn(xi1)[n]q = rn(q)[n]q =

[
n
2

]
q

.

On the other hand, if we use (8), we have

wn+2(Tn+2) =
s+1∑
i=1

∑
x∈O′

i

wn+2(x) =
s∑
i=1

∑
x∈O′

i

wn+2(x) +
∑

x∈O′
s+1

wn+2(x).
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Here

(9)

s∑
i=1

∑
x∈O′

i

wn+2(x) =
s∑
i=1

n+2∑
j=1

wn+2(xij) =
s∑
i=1

wn+2(xi1)[n+ 2]q

=
s∑
i=1

q2wn(xi1)([n]q + qn[2]q)

= q2rn(q)[n]q + qn+2rn(q)[2]q

= q2
[
n
2

]
q

+ qn+2

[
n
2

]
q

[n]q
[2]q

= q2
[
n
2

]
q

+ qn+2

[
n− 1

1

]
q

.

Using (4) we can find the representatives of all orbits under of Cn+2.
1(` + 2) is the only one representative of orbit in the action of Cn+2

which are not in orbits of the action of Cn. Using the weights given in
(5) and (6)

(10)

∑
x∈O′

s+1

wn+2(x) = wn (1(`+ 2)) [n+ 2]q

= q(2`+3)+1−2(`+2)[n+ 2]q = [n+ 2]q.

Combining (9) and (10), we have

wn+2(Tn+2) = q2
[
n
2

]
q

+ qn+2

[
n− 1

1

]
q

+ [n+ 2]q

=

[
n+ 2

2

]
q

from Proposition 2.1.

Hence we have wn(Tn) =

[
n
2

]
q

for n ≥ 2.

Theorem 2.3. Orbit polynomials On,2
n (q) is equal to the sum of

weights of representatives of all orbits of size n.

Proof. Assume first gcd(n, 2) = 1. Then there are only s orbits of size
n under Cn, where s =

(
n
2

)
/n. Let O1, O2, . . . , Os be all orbits of size n
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under Cn. Then from the proof of Theorem 2.2 we know that

(11) wn(Tn) = rn(q)[n]q.

Assume now gcd(n, 2) 6= 1. Then there are s orbits O1, O2, . . . , Os of
size n where s = (

(
n
2

)
− n

2
)/n, and there is only one orbit

O0 = {x01, x02, . . . , x0n
2
}

of size n
2
. Hence

(12)

wn(Tn) =
∑
x∈([n]

2 )

wn(x) =
∑
x∈O0

wn(x) +
s∑
i=1

∑
x∈Oi

wn(x)

= (1 + q2 + · · ·+ qn−2) +
s∑
i=1

wn(xi1)[n]q

=
[n

2

]
q2

+ rn(q)[n]q.

From (3), we have

(13)

[
n
2

]
q

=

{
[n]q O

n,2
n (q) if gcd(n, 2) = 1[

n
2

]
q2
On,2

n
2

(q) + [n]q O
n,2
n (q) if gcd(n, 2) 6= 1.

Note that On,2
n
2

(q) = 1. Comparing (11) and (12) with (13), we have

On,2
n (q) = rn(q).

Corollary 2.4. Let d | n. Then orbit polynomials On,2
d (q) have

non-negative coefficients.

Proof. Since On,k
n/t(q) = O

n/t,k/t
n/t (qt), it is sufficient to prove Corollary

2.4 for d = n. Then On,2
n (q) = rn(q) by Theorem 2.3 and rn(q) clearly

has non-negative coefficients from the definition.

3. Remark

Let n, k be positive integers with (n, k) = 1. In this section we suggest
a strategy for the constructive proof of the positivity of coefficients of
the orbit polynomial On,k

d (q).
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Question 1.

[
n+ k
k

]
q

has recurrence relations similar to Propo-

sition 2.1 for k = 3, 4, 5. It would be interesting to find a recurrence

relation of

[
n+ k
k

]
q

similar to Proposition 2.1 for an arbitrary positive

integer k, i.e., to find the polynomial fk(q) satisfying the equality[
n+ k
k

]
q

= qk(k−1)
[
n
k

]
q

+ qn+k(k−1)
[
n− 1
k − 1

]
q

+ fk(q)[n+ k]q.

Let Tn =
(
[n]
k

)
and Tn+k =

(
[n+k]
k

)
, and let wn(x) and wn+k(y) be weights

of x ∈ Tn and y ∈ Tn+k, respectively. If

O1 = {x11, x12, . . . , x1(n−1), x1n}
O2 = {x21, x22, . . . , x2(n−1), x2n}

...

Os = {xs1, xs2, . . . , xs(n−1), xsn}

are all orbits of size n in the action of Cn, and

O′1 = {x11, x12, . . . , x1n, x1(n+1), . . . , x1(n+k)}
O′2 = {x21, x22, . . . , x2n, x2(n+1), . . . , x2(n+k)}

...

O′s = {xs1, xs2, . . . , xsn, xs(n+1), . . . , xs(n+k)}
O′s+1 = {x(s+1)1, x(s+1)2, . . . , x(s+1)n, x(s+1)(n+1), . . . , x(s+1)(n+k)}

...

O′t = {xt1, xt2, . . . , xtn, xt(n+1), . . . , xt(n+k)}

are all orbits of size n+ k under Cn+k, we have

wn+k(Tn+k) =
t∑
i=1

∑
x∈O′

i

wn+k(x) =
s∑
i=1

∑
x∈O′

i

wn+k(x) +
t∑

i=s+1

∑
x∈O′

i

wn+k(x).
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Question 2. Define wn(x) and wn+k(y) such that
s∑
i=1

∑
x∈O′

i

wn+k(x) = qk(k−1)
[
n
k

]
q

+ qn+k(k−1)
[
n− 1
k − 1

]
q

and

t∑
i=s+1

∑
x∈O′

i

wn+k(x) = fk(q)[n+ k]q.

The answers for the above Question 1 and 2 will give the constructive
proof of the positivity of coefficients of the orbit polynomial On,k

d (q).
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