J. Korean Math. Soc. 54 (2017), No. 3, pp. 967-986
https://doi.org/10.4134/JKMS.j160320
pISSN: 0304-9914 / eISSN: 2234-3008

SUMMING AND DOMINATED OPERATORS ON A
CARTESIAN PRODUCT OF ¢, (X) SPACES

GABRIELA BADEA AND DUMITRU PoPA

ABSTRACT. We give the necessary condition for an operator defined on
a cartesian product of cg (X) spaces to be summing or dominated and
we show that for the multiplication operators this condition is also suf-
ficient. By using these results, we show that IIs (co, ..., co;co) contains
a copy of Is (lg”\mGN) for s > 2 or a copy of ls (l{”|m€N)7 for
any 1 < s < oo. Also, Agy,...,s, (€o,...,c0;co) contains a copy of
Loy (s1yennssm) VR (81, .,80) < 2 0racopy of Ly, (s;,....60) (I3 | m e N)
if 2 < vp (s1,...,8n), where m = i+"'+$' We find also
the necessary and sufficient conditions for bilinear operators induced by

some method of summability to be 1-summing or 2-dominated.

1. Introduction and notation

In this paper we continue our study on the summing operators defined on
a cartesian product of ¢y (X). While in [2] we deal with nuclear and multiple
1-summing operators on a cartesian product of ¢y (X), here we will address the
dominated and summing operators defined on the same cartesian product. The
summing operators as well as the dominated ones are two possible extensions to
the multilinear settings of the linear summing operator, which were considered
in order to find multilinear versions of the Pietsch domination theorem. In this
paper, we will study simultaneously the dominated and the summing operators
on a cartesian product of ¢ (X).

The notations and terminology used along the paper are standard in Banach
space theory, as the reader can see in the famous monographs [5, 6, 15].

For Xi,...,X,, Y Banach spaces over the scalar field K = R or C, we
consider the Banach space £ (X7, ..., X,;Y) of all bounded n-linear operators,
called simply multilinear operators, endowed with the operator norm

T = sup T (21,...,2,)] -
lz1 <1, Jzn | <1
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Let & = (Xg),cy be a sequence of Banach spaces. We denote by co (X) the
Banach space of all sequences (), oy With 7, € Xj for all k € N, [[zx][y, — 0
as k — oo, endowed with the norm ||(zk)kENHc0(2{) = ilé;N)kaHXk, see [16,

page 43]. Note that for z € co (X), [|z[l 1) = sup|[px ()| x,, where py :
keN

¢o (X) — X}, denotes the canonical mapping defined by py (21, z2,...,) = x,
k € N. Also for k € N, we consider the canonical map oy : X — co (&)
defined by oy, () = (0,...,0, 2« ,0,...). To avoid any possible confusion, if
Lth
X = (X,i) (1 < j < n)is a finite system of sequences of Banach spaces
keN

we write o] : X} — o (X;) respectively p. : o (Xj) — X} for the canonical
mappings.

Let us recall the definition of a Banach ideal of operators, see [11] and also
[9].
A subclass A of the class £ of all bounded n-linear operators between Banach
spaces is called an ideal if

(M,) For all Banach spaces X,...,X,,Y the component
AXy, o, X V) = L( X, .., X3 Y)N A

is a linear subspace of £(X1,...,X,;Y).
(M3) (the ideal property) If

XAy, X By, vix-xY, Sz 3w,

where all A; and S are bounded linear operators, T'€ A(X1,...,X,;Y),
then the composition S o T o (Ay,...,A,) € A(Xy,..., X, W);
To(Ay,...,A,): X5 X -+ x X, = Z is defined by

To(A1,....,An) (x1,...,2n) =T (A1 (1), ..., An (z0)) .

(M3) The mapping Px : K*" = K, Px (A1,...,A\n) = A1 -+ A, belongs to A.
A (w-) normed ideal (0 < w < 1) is a pair (A, ||-|| 4), where A is an
ideal and [-]| 4 : A — [0,00) is an ideal (w-) norm, i.e.,

(M) |||l 4 restricted to each component is a (w-) norm.

’

(My) |SoTo(Ar,..., Al 4 < ISIITI 4 IJAL]-- - [|An ]| in the situation of
(Ma).
(M3) ||Px| 4 =1 in the situation of (M;).
A Banach ideal of operators is a normed ideal of operators (A, ||| ) with the
property that all the components (A(X1, ..., Xn;Y), ||| ,) are Banach spaces.
Given 0 < p < oo and a Banach space X, for a finite system (x;);-;,,, C

X we define 1, (z; |1 <i<n) := (Z |:ci||p) " and wp ((:Ci)1<i<n ;X) =
i=1 ==

n
sup < |o* (z;)|" ) . If we consider the finite system of elements (x;),
1

<i<n
le= <1

1=
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n p
as a finite set A, then we denote by w, (4) = sup ( | (z1)|p> . For
lz~lI<1 1
0 < p < o0, we use the common notation [, for the space of all scalar sequences
1
A= (An) e such that 3572 ) [An|” < oo, Al = (32521 [An[")?. For 1 <p <
00, we define p* the conjugate of p, that is % + 1% =1.

The following notation will be used to study simultaneously the (s;s1, ...,
Sp)-summing operators and the (s1, ..., $,)-dominated ones. Let n be a natural
number. We define v,, : [1,00)" — [1,00) by Ty = i N i

Let $1,...,8, € [1,00) and s € (0,00) be such that v, (s1,...,8,) < s. A
bounded multilinear operator T': X7 x --- x X, = Y is called (s;s1,...,8,)-

1=

summing if there exists constant C' > 0 such that for each (zf ) C X;
1<i<m

(1 < j < n) the following relation holds

I (T (xf,....27) [ 1<i<m) < Cu,, ((x})lgigm) W, ((:v?)lgigm) :

In this case, Tgs,...s, (T') := inf {C'|C as above}. The class of all (s;s1,...,
Sn)-summing operators from X; X --- x X, into Y is denoted by

sy s (X1, 0, X3 YY)

It is well known that the class of all (s;s1,...,s,)-summing operators is an
ideal and for s > 1,745, s, () is a norm, while for s < 1, mg.s, .., (-) is a
s-norm.

For s € [1,00), a (s;s,...,s)-summing operator will be called a s-summing
operator.

If s1,...,80 € [1,00) a (v (S1,...,8n);81,-..,8n)-summing operator T :
X1 x - x X, =Y iscalled (s1,...,s,)-dominated and

Ay, sm (T) = T (81,-+4,51)i81 -+ 8n (7).

We denote by A, . 5. (X1,...,X,;Y) the class of all (sq,...,s,)-dominated
operators from X; x - -+ x X, into Y. If v, (s1,...,8,) > 1, then Ag, 5. (%)
is a norm and if v, (s1,...,8n) <1, Ay, s, () isa v, (s1,...,8,)-norm.

We will need the following obvious result whose simple proof is left to the
reader.

Remark 1. (1) T : Xy x---x X,, = Y is (s;81,...,8,)-summing, then

;81,0008 (T) = Sup {ls (T (3311; e ax?) | 1<i< m)} )

where the supremum is taken over all systems (xz) C X such that
1<i<m

s J <1(1<j<n).
w;((%)lgig)_ (1<j<n)
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i) 7T : Xy x--xX, = Yis(ss1,...,8,)-summing, then for any

0 < e < 1 there exists (xf) C Xj; such that ws, ((wi) ) <1
1<i<m 1<i<m
(T) <1 (T (a},...,20) [ 1<i<m).

79

(1<j<n)and (1—¢)mss,

.Sn

2. Summing and dominated multilinear operators on a cartesian
product of ¢g (X) spaces

The next lemma is well-known, but for the sake of completeness we will
include here its short proof.

Lemma 2. Let 1 < s < oo and (2i),<;<), C co (X). Then

Ws ((zi)1§i§k ;€0 (X)) = ilelgws ((pn (xi))lgigk ;Xn) .

Proof. By a well-known relation, see [12, Lemma 1.14, page 40], we have

k
(*) Ws ((xi)1gigk i €o (X)) = sup AiZ;
I )l <1550 co(%)
and then
k
Ws ((‘Ti)1<i<k ;Co (X)) = sup sup [(pn | Y Nizi
o Iy M)k, <1\ n€N =1 X,
k
= sup sup Z Aipn, (2:)
neN \ |1, xe) e <152 ¥,

= sggws ((pn (‘Ti))lgigk ;Xn) again by (x).

Our next result gives a necessary condition for a bounded multilinear oper-
ator defined on a cartesian product of ¢y (X) to be summing or dominated.

Theorem 3. Letn € N, 1 < s1,...,8, < 00, 0 < s < oo be such that
Un (81, 8n) < s and T : co(X1) X -+ X ¢o(X,) = Y a bounded multilinear
operator. If T is (s;$1,. .., Sn)-summing, then all T o (O’é, ce UZ) P XL XX
X =Y are (s;s1,...,5,)-summing and (775;517,,,,871 (To (o,ﬁ, .. .,a}j)))keN €
ls.

Moreover, ||(sy,...sn (T 0 (0, ..., Ug)))keNH < Tsise,nsn (T).

S

Proof. The fact that all T o (O’é, e o}j) are (8;$1,...,Sy)-summing follows
from the ideal property of the class of all (s;s1,...,s,)-summing operators.
Let m € Nand 0 < € < 1. For 1 < k < m, by Remark 1, there exists
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F, C N, F}, a finite set and (z,ﬂ) - Xi such that w; (zfﬂ | i€ Fk) <1
i€Fy,
for 1 <j<nand

(1= &) Tgisysn (T (0hs-- -y 00))
<, (Tol(o},....00) (:c,lw,:czl) | i€ Fy).

Then
1
m E
(1-¢) (Z Tsi81,0nr8m (ai,...,og))]s>
k=1
1
m s
< (Z Z HTO (O’i, ... ,02) (x,lﬂ, ... ,:cZZ)Hs)
k=1 i€ F},
1
= (Z Z HT Uk xkz ) or (7h;) )H )
k=11€F}
Further, since T is (s;s1,. . ., Sp)-summing,
1
k=1i€F}

1
s

= (ZHT(U} (21;) ool @)+ + Z T (o, (2. ,...,a;;(x:;n))us)

i€ P 1€ Fm

S Ts;s1,..., Sn (T) Wsy (Al) crWs, (An) )

A= {od (oh) 11 € P} U{od (bh) i € B} U~ U foh, (2h) 17 € B}
CCo(Xl)

Ap ={o7 (a1;) i€ Fi}U{oy (zn;) i € Foy U~ U{oy, (2,;) |1 € Fin}
Cco (Xn) .
From Lemma 2 we have

Ws; (AJ) = Supwsj (pa (A )) for 1 <j<n.
aeN

Let a € N. For instance, by using the relations p} ool =0 for b € N, b # a and
paooh = Ix:, we have
Pa (A1) = {pa ool (z1;) [i € Fi} U{pz o0y (23;) | i € Fa}U---
U{ps ooy (z) i€ Fa}
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f {zl lie F,}u{0} for1<a<m
N {0} for a > m+ 1.

Then
ws, (A1) = max{wSl (:c%Z |1 e Fl) yeee s Wy, (x,lm |ie Fm)} <1
since wy, (z1; |1 € F1) <1,..., wy, (zl,; | i€ Fy) < 1. In a similar way,
ws, (An) = max{ws, (7, |1 € F1),...,ws, (2, |1 € Fy)} <1.
Thus

(1—¢) (Z [775;517“,,871 (T o (a,i, e a}j))]s> < Tsisgronsn (1)

k=1

Since 0 < ¢ < 1 and m € N are arbitrary, we obtain

(Zm ..... . <To<o,1,...,o::>>r) < s (7).

k=1
which completes the proof. (I

By Theorem 3 we obtain the following two consequences:

Corollary 4. Let T : ¢o(X1) X -+ X ¢o (X)) = Y be a bounded multilinear
operator.

(i) Let 1 < s < oo. If T is s-summing, then all To (o},...,00) : X} x -+ x
X — Y are s-summing and (ﬂ's (T o (a,i, ceey O‘E)))keN € ls. Moreover,

H(Trs (T o (O‘i, . "Ug)))keNH < (T).

S

(ii) Let 1 < s1,...,8, < oo. If T is (s1,...,8n)-dominated, then all
]

To (of,....o0) + X} x - x X = Y are (s1,...,5,)-dominated and
(A81,---,sn (To (Uli’ s ’UZ)))keN € lvn(51 »»»»» sn)*
Moreover, (Asl _____ s (To (O’i,...,o’?)))keNH ( : <Ag s, (T).
Vi (81,4.eny Sn

We need also the following kind of Nahoum’s result, see [10, Theorem, page
5], [16, Lemma 23, page 274].

Proposition 5. Let s1,...,5, € [1,00), s € (0,00) be such that vy, (s1,...,5n)
<sandT: X1 x---xX, =Y abounded multilinear operator. If there exist a

sequence (Zy),cy of Banach spaces and a sequence of (s;s1,.. ., Sp)-summing

operators Ty, : X1 X - - X X, = Z, such that all Ty, are (s; $1,. .., Sp)-summing,
o0

(Tsistrenssn (Tk))pen € s and ||T (1, z0)lly < kz 1 T5 (21, .. 2n)l 7, for
=1

(T1,...,2n) € X1 X -+ X Xy, then T is (8;81,. .., 8,)-summing and

Ts;51 ..., Sn (T) < H(Ws;sl ..... Sn (Tk))kGNHs .
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Proof. Let (:Ci)lgigm C X; (1 <j<n). Then
2T (s w )

IA
N
NE
=5
=
B,
e

S

<Y [Taisnsn (Te)] [wsy (2} [ 1< 8 <m) -y, (27 | 1< 0 < m)]

By the definition of (s;sy,. .., s,)-summing operators the proof is completed.
O

Our next result proves that for the multiplication operator, the necessary
condition from Theorem 3 is also a sufficient one.

First let us recall that for the sequences of Banach spaces &; = (X’]“)k N
€
(1<j<n),Y=(Yr)en and for a sequence of bounded multilinear oper-

ators V =(Vi)pens Vi + Xp X -+ x X' — Y} such that sup ||[Vi| < oo, we
keN

define the multiplication operator My : ¢ (X1) X -+ X ¢o (X)) — ¢o (V) by

My (@)oo @een) = (Vi (ko) e

Theorem 6. Let 1 < sq,...,8, < 00,0 < s < 00 be such that v, (s1,...,8,) <
s and My : co(X1) X -+ X ¢cg (X)) = ¢o(Y). The following assertions are
equivalent:

(i) My is (8;81,...,5n)-summing.

(ii) all Vi are (s;81,...,8n)-summing and (Tss, .. s, (Vk))pen € ls-

Moreover, Tg.s,.....s, (My) = H(7r5;51 ,,,,, o (Vk))keNHs‘
Proof. (i)=-(ii). Since, by (i), My is (s;s1,. .., Sp)-summing, from Theorem 3
it follows that all Myo (op,...,00) : Xpx---x X" = ¢ (V) are (s;51,..., 8p)-
summing, (Ts;s,.....s, (Mvo (of,..., U,’j)))keN €l, and

| Tt My 0 (0 09))) | < Tt W)
S
Since My o (of,...,0%) = (0,...,0,0% 0 Vk,0,...) and My o (0},...,00) are
——
kth

(8381, .,8,)-summing we deduce that of oV} are (s; s, ..., s,)-summing and

(Myo(o},...,01)) = Tss1.....s, (0 ©Vi). Further, by the ideal
property pk ook oV, =V, are (s;s1,...,5n -summing and 7s, .. s, (Vi) =
k k $8150e58n

Ts351,0..,5n
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151, 8m (pﬁ o J,’j o Vk) < Toisn,..om (o’,j o Vk). We deduce that

(775;51,...,sn (Vk))kEN € ls and H(ﬂ-s;sh...,sn (Vk))kGNHs < T8;51,...,8n (MV) .

(i)=(i). We have My (21,...,z,) = (Vi (0} (z1),...,D} (mn)))keN and

from [[My (21, ..., @)ooy < 1My (21, 20)|| | we deduce

(|My (21, ... 2y CO ) < ZHVko pk,...,pZ))(xl,...,xn)H .
Since by (ii) and the ideal property ms.s, ..., Sn(Vk o (p,lc, .. ,pk)) <Tss1,n(Vi)
and (7s;s; .5, (Vk))pen € ls from Proposition 5, My, is (s; 51, ..., $,)-summing
and s, e, (My) < [|(Taseron (Vi) gent]) - -

Corollary 7. (a) Let 1 < s < 0o and My : ¢o (X1) X -+ X ¢ (Xpn) = ¢o (V).
The following assertions are equivalent:

(i) My is s-summing.

(ii) all Vi, are s-summing and (ms (Vi))pen € s

Moreover, s (My) = || (s (Vi)

(b) Let 1 < 81,...,8, <00 and My : co (X1) X -+ X cg (X)) = co (V). The
following assertions are equivalent:

(i) My is (s1,- .., Sn)-dominated.

(ii) all Vi, are (s1,...,sn)-dominated and (A, .. (Vk))keN € Lo (s1,08m) -

Moreover, Ay, .. s, (My) = ||(A517m,sn (V&) keNH

Vn (81,00 sn)’
3. Copies of vector-valued sequences spaces in Il (cg, ..., Co;Co)

In this section our goal is to present some non-trivial examples of summing
operators, as applications of the above results. Our first examples will be
defined by using a technique named Awverage of a finite number of elements,
introduced by the second named author in [13]. The idea of considering these
averages was suggested by the well-known discrete form of the Rademacher
means, namely the equality

2m

/1
0 (£1,mem)E{—1,1}™

and it became an useful tool to define and study various examples of summing
operators.

Let us now fix some notations and recall this concept.

Let m be a natural number. For (A1,...,A;,) € K™ we define the finite
system denoted by Average; (A\; | 1 <i < m) as being the system with 2™ el-
ements obtained by arranging in the lexicographical order of D, = {—1,1}"
the elements e1 A1+ - -+ &mAm for (€1,...,6m) € Dy, (On {—1,1} we consider
the natural order). Thus, as sets we have

Averagey (A |1 <i<m)={etM+ - +emim|(e1,.-.,6m) € D}

m

Zﬂ()

=1

1
dt = > ez + - + emam]||, see [5]
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Next, if we denote the 2" elements of the set Average; (A; |1 <1i<m) by
{B1,B2,-..,B2m} and we apply the same procedure, we define

Averages (A\; | 1 <i < m) = Average; (8; | 1 <1< 2™)
= {Elﬁl + s + EQmBQm | (51, e ,EQm) c DQm} .

For more details about this technique and also several related results, see [14].
Let us note that

(1) ek [(A1, - Am)lly < [Averager (N |1 < i <m)l o < [[(Ars - Al
(where cg = 1 in the real case and cx = % in the complex case) and further by
Khinchin’s inequality

CK

(2) V2

1 )
Iy Am)llyy < 5 [l Averages (As | 1 < i < m)l

<N Al

A

Let (ami)1gi§m, men be a triangular matrix of scalars, a, = (a1, - -, Cmm)
and @ = (m),,cn- The sequence of averages

Average; (a11) , Averagey (a1, aa2) , . .., Averager (am; | 1 <i<m),...
will be denoted by (Average; (am;i | 1 <i <m)),, . From (1), we have that
(Averagey (aum; | 1 <4< m)), oy € co if and only if |ap1| + -+ + |mm| — 0
ie, a € co(If" | m € N) and further we obtain

ek ||l ) < H(Avemgel (mi | 1< < m))meNﬂCU

co (17 |meN
< Ha”cO(lmmeN) :

Next, the sequence of averages

Averages (%an) , Averages (Q%azl, 2%0422) ..., Averages (z%ami |1<i< m) e

will be denoted by (Avera962 (%ami [1<i< m))m

that (Avemgeg (%ami [1<i< m))meN

|Qmm|® = 0, ie., a € ¢o (I3 | m € N) and further we obtain the inequality

ey From (2), we have

€ ¢ if and only if o |® + - +

CK 1 )
— el (1m meny < H <Averag62 <_ami |1<i< m))
(0 vaelEiney m men

< el

co

co(l;”|m€N) :

Let us recall that form € N, 0 < p < oo, [}" := (Km, ||||p) and (ex)y<p<m C
l;" is the canonical basis of the [;". Let us also recall the concept of the
nuclear multilinear operators, see [7, Definition 1.26]. A bounded multilinear

operator T : X; x -+ x X, = Y is called nuclear if there exist (wi)keN -
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va ey (’l/)]?)keN - X:;v (yk>keN - Y SuCh that 220:1 H’l/)liH T ||1/}Z|| Hyk” < oo
and

T(x1,.. w0) = D _Wh (x1) - Yf (@) ye for (z1,...,20) € X1 X -+ X X,
k=1

Such a representation is called a nuclear representation of 7. In this case
TN e = {30 |[00k]] - 1921l lyx|l}, where the infimum is taken over all
nuclear representations of 7. This class, denoted by (N, [|*||,,,.)» i the smallest
Banach ideal among all other Banach ideals of multilinear operators (for the
linear case see [11, Theorem 1.7.2, page 64] and for the multilinear case, see [1,
Theorem 2]).

The first results of this section study the summing nature of the multipli-
cation operator. These results will further be used in studying the summing
nature of the operator defined by Average; and by Averages. The next result
extends Theorem 11 in [4].

Proposition 8. Letn € N, 1 < s9,...,8, < 00, 0 < s < oo be such that
Un (81,.-,8n) < s. Let m € N, a = (a1,...,ap,) € K™ Then the multi-
plication operator My, : 172 x -+ x I = 17", My (21,...,20) = a1+ Ty =
(i (T1,€0) - (Tns€i))1<icrn 18 (881, ., 8n)-summing and

(i) if0<s<1, Ts581,...,5n (Ma) = ||a||s;

(i) if 1 < s <00, Tasy,....s, (Ma) = |||
Proof. Let us first note that || M, = |]|;-
(i) Let 0 < s < 1. For all (z1,...,2,) €1 X -+ x 17 we have

[Mo (21,5 wn)lly < [[Ma (21,020l

= <Z|ai|s |<$1a€i>|s"'|<$na€i>|5>

By considering the rank one functionals U; : I x--- <17 — K, U; (z1,...,2,) =
a;{x1,ei) - (Tn,e;) (1 <i<m), it follows that

s

m
Mo @1y} < S0 ()
=1

By Proposition 5, we deduce that M, is (s;s1,..., $p)-summing and further-
m s m s

more, sy (M) < (s @) = (£ 1al”) =l von
i=1 i=1

the reverse inequality, by the definition of the (s; s1, . .., 8, )-summing operators

and ws; ((ei)lgigm;lg) =1(1 < j < n), it follows that

1

<Z | Mo (eis - -, ei)||s> < Tsisp,sn (My),
i=1
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hence |||, < sy, 50 (Ma).

(ii) Let 1 < s < co. From M, (x1,...,2,) = @i {(x1,€;) .. (Tn, €i) €5, We

oF

Il
-

(2

m
deduce |[Mq|l,,,. < > || = [|ef|;. However, since for each Banach ideal of
i=1
multilinear operators we have always [|-|| < ||| 4 < |||l,,uc> s€€ [11] and also [1],
we get [ally = [Mo| < [|Mall 4 < |Mallyye = lledly Since s > 1, g, is
a Banach ideal and the statement follows. O
Proposition 9. Let n, m be natural numbers, a = (aq,...,amy) € K™. Let
1 <p<ooandlet My : 132 x -+ x I — U" be the multiplication operator
My (21, ... 2n) =axy - 2y and 1 < 81,..., 8, < 00.

Ozi) If v (S1,...,80) < p, then My, is (s1,...,8y)-dominated and

Dsysn (Ma) = lall,, s,

(i) If p < vn (81, -+, 8n), then My is (81,...,Sp)-dominated and
Agisn (Ma) = [l -

Proof. Since M, is a finite rank operator it is (s1,..., s,)-dominated. The
crucial point is the evaluation of A, . . (M,,).

(i) We have M, (e;,...,e;) = a;e; and since wy, ((ei)lgigm;lg) =1(1<
j < n) by the definition of (si,..., s,)-dominated operators we deduce

< Asl,...,sn (Moz)-

||a||'un(51 ..... Sn)

Also from vy, (81,...,8,) < p, for all (z1,...,2,) € I X -+ - X 2 we have
HMDz (£C1, s axn)”p < HMOt ('Tla s ’xn)an(sl ..... Sn) and then
Mo (21, ) 1)
< Mo (@1, )

m

m vn (51, >5n)
Asl VVVVV . (Ma) < <Z |ai|vn(51 ..... 5n)> = ||a||Un(517~~~1Sn) .
i=1
(ii) From p < vy, (81,...,8,) let us define 1 < ¢t < oo by 1—17 = m—k%

Then, there exist 8 = (B1,...,0m) € K™ and v = (11, ...,7m) € K™ such that
a=fy, e, a; =By, L <i<mand |of, = |8 y 71l We deduce
that Mo : I x - x 12 S gm
M, = M, o Mj.

VU (81,0458n

M
— I is a factorization of M,, that is
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By Proposition 5, Mg : 1T X --- < IZ = 17" (o yis (s1,..., $p)-dominated
and Ay, s, (Mg) < 1By, (s1,....5,)- By the ideal property of (s1,...,s,)-
dominated operators, M, is (s1,. .., $y)-dominated and

Asysn (Ma) < Dy s (M) [My]] < 1Bl (sy...oy Y1l = lll, -

Since vy (s1,...,8,) > 1 we always have [, = [[Ma| < Ay, s, (Ma). O

The next result will be used in studying the summing nature of operators
defined by Averages.

Proposition 10. Letn € N, 1<s<oo,meN, a=(a1,...,an) € K™ and
My 2 1 x - x I = 1Y, My, (21,...,2,) = axy -+ T, be the multiplication
operator. Then M, is s-summing and

(i) if s <2, ms (Ma) = |lall,;

(ii) if 2 < s, ms (Mo) = |||,

Proof. (i) Since s <2, ||-[|; < |||, and thus

m
1Mo (@1, szl < Mo (21, )l = D el (e, e [z, €]
i=1

1

Then, by Proposition 5, My, is s-summing and 7, (M,) < <Z |ai|s) = ||a|,-
i=1

Now from w, ((ei)1§z‘§m ;lm) =1, My (€,--.,¢ei) = aze; (1 <i<m) and the

o0
definition of s-summing operators, we deduce ||a|, < 75 (My).

(ii) The case n = 1. We use that in the linear case, as is well-known and

easy to prove, m (My : 122 — 15") = ||a|y; since 2 < s, by the inclusion the-
orem from the linear case, we have |||, = [|[Ma|| < 7 (Mo 212 —15") <
72 (Mo 17— 137) = [l

The case n > 2. We have || M, || = |||, and since always | Ma|| < 75 (Ma) ,
we get |la|l, < ms(Ms). The following reasoning was suggested to us by
[3, Lemma 3.2]. Since n > 2, for (z1,...,2,) € I X - X I we have
Mo (21, .. 20)| < [l ||22] - - lzn]l. Then for every (z}), .., CIZ,...,
(x§)1<i<k C I} we have

1Mo (i) || < [laws |[{|]] -l

K2

< ot s ((#2)y i) - w0s (G1)1cicr)

and so

k 3
(Sl et
k :
< (; Hozle ||5> W ((z?)lgigk) W ((x?)lgigk)
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IN

ms (Mo 2 155 — 15") ws ((le)gigk) T Ws ((z?)lﬁiﬁk)

llexlly ws ((le)gigk) T Ws ((‘T?)lgigk) : O

We are now able to present two results which give a complete characteriza-
tion of the summing nature for some non-trivial operators defined by Average.
We denote by (ami); < i<m.meN a1 infinite triangular matrix of scalars, o, =

(m1s- - mm) € K™ a0 = (am) ey and ki, = w for all natural numbers
m.

Proposition 11. Letn € N and 1 < s1,...,8, < 00, 0 < s < o0 be such
that vy (s1,...,8,) < 8 and (mi)i<icmmen be an infinite triangular matriz

of scalars such that o € loo (I7* | m € N). Let Avl :co x -++ X cg — co be the
operator defined by

Avl (&1, ..., &) = (Averager (oumi (€1, €itnn ) - (Ens €in) | 1 <0 <m)),0 -
Then: i) for 0 < s < 1, Avl is (s;s1,...,8n)-summing if and only if a €
Is (I | m € N).

ii) for 1 < s < oo, Av) is (s;s1,...,8n)-summing if and only if o €

Is (I7" | m € N).
Proof. Let (&1,...,&,) € co X -+ X ¢g. Then, by (1), Av} (&1,...,&,) € o if
and only if V! (&,...,&,) € co (I7* | m € N), where

Vo} (517 ce ﬂgn) = (aml <§17€1+km> T <§n’el+km> yeeey

Umm <§1; ekm+1> e <§’nﬂ ekm+1>)meN

and in this case, by (3), we have
CK HVO} (513 .. ’gn)HCo(lTVTLGN) S HA’Ui (£1a LY ’gn)Hco

< Hvo} (517 s ’gn)Hco(l{”|m€N) :

This means that Av} is well defined if and only if the operator V! : ¢y x - -+ x
co — co (I7" | m € N) defined by

Vo} (517 ce ﬂgn) = (aml <§17€1+km> T <§n’el+km> seees

OUmm <§1; ekm+1> e <§’nﬂ ekm+1>)meN

is a bounded multilinear operator. Further, from (5), Av! is s-summing if and
only if V! is s-summing.

Now, if we consider the identification ¢g = ¢ (I | m € N), we observe that
the operator V.1 : co (I™ | m € N) x -+ - x ¢ (I | m € N) — ¢o (I* | m € N) is
actually My 1 co (I |m eN) x---xco (I | m €N) = co (I7" | m € N), My =
(Ma,,.)mens Where My, o 170 x -+ - < 170 — 17" is the multiplication operator.
Then Av} is (s;s1,..., 8, )-summing if and only if My : co (I | m € N) x

X eI |meN) = ¢ (i7" | meN) is (s;81,...,8,)-summing, which by
Theorem 6 is equivalent to (75, s, (Ma,,)) € ls. Now by Proposition 8,



980 G. BADEA AND D. POPA

it follows that for 0 < s < 1, a@ = (m),ey € s (IJ" | m €N) = [, and for
1 <s<o00,a=(m)yey €ls (7" | mEN). O

Before presenting a consequence of the above result, let us recall that a
normed (w-normed) space X contains a copy of the normed (w-normed) space
Y if there exist T : Y — X a linear operator and some constants ¢i, cg > 0
such that ¢1 ||lylly < IT (W)l x < e2|lylly for y € Y. From Proposition 11, we
deduce:

Corollary 12. Let 0 < s < oo and 1 < s1,...,8, <o0o. Then
i) for 0 < s < 1, T4 (co, ..., co;¢0) contains a copy of ls (I™ | m € N); for
1< s < o0, I (e, - - -, co; ¢o) contains a copy of ls (17 | m € N).
ii) for v, (s1,...,8n) <1, Ag, .5, (co,--.,C05¢0) contains a copy of
lvn(51 ,,,,, sn) (lgi(sl ..... Sn) |m e N) ;
for 1 <w, (s1,...,8n) <00, Ag, ... s, (Co,...,C0;C0) contains a copy of

Our next result studies the multilinear operator defined by Averages. As
consequences of this result, we will identify some other copies that IIs(co, . . ., co;
¢p) contains.

Proposition 13. Let 1 < s < 00, 1 < 51,...,5, < 00 and (mi)i<;<m men
be an infinite triangular matriz of scalars such that o € o (I5* | m € N). Let
Av? iy x - X cg — co be the operator defined by

A’Ui (515 cee ;én) = (Avemg@ (Q%O‘mi <€17 €i+km> ce <€7u ei+km> | 1<:i< m))mEN'

Then:

1) Av2 is s-summing if and only if & = (m),en € Is (17" | m € N) = I, if
1<s<2o0ra=(am),ey €L (15| meN) ifs>2.

ii) AvZ is (s1,...,sn)-dominated if and only if & = (@m),,en € Loy (s1,..50)
if U (51,..580) < 2, o0 @ = () ey € lon(sr,nsn) (5 |mEN) if 2 <
Un (81, -+, 8n) -

Proof. Let (&1,...,&,) € ¢o X -+ X cg. Then, by (2), AvZ (&1,...,&,) € ¢ if
and only if V2 (&1,...,&,) € co (I3* | m € N), where

Vo? (51, cosn) = (aml (&, €1+km> T <£n’ 61+7€m> IR
Qmm <§1’ ekm+1> T <£n’ ekm+1>)m€N
and in this case, by (4), it follows that

T V2 &)l ey = 145 s 60,

(6) i
S Hva (517 cee 7£n)||co(l;”'|mEN) !
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This means that Av2 is well defined if and only if the operator V.2 : ¢o x - -+ X
co — co (15 | m € N) defined by

Vo? (51, - 7§n) = (Oéml <§1;61+km> o <§n761+km> PR
Omm <§17 ekm+1> T <§”’ ekm+1>)meN

is a bounded multilinear operator. Further, from (6), Av2 is (s;81,...,5n)-
summing if and only if V2 is (s;s1, ..., 8, )-summing.

Now, if we consider the identification ¢y = ¢o (I | m € N), we observe that
the operator V2 : ¢o (I |m € N) x - -+ x ¢o (I | m € N) — ¢ (15" | m € N)
is actually My : co(IZ |meN) x -+ x oI |meN) = ¢ (15| meN),
My = (Ma,,)en, Where My, @ 100 x --- x I} — 13" is the multiplication
operator.

Let us note that the conditions stated regarding the triangular matrix assure
us that Av? is well defined.

i) We have, Av? is s-summing if and only if My is s-summing, which by
Theorem 6 is equivalent to (7s (Ma,,)) € ls. Further, by Proposition 10 we
have that if 1 < 5 < 2, a = (m)ey € LI [meN) orif s > 2, a =
(@m)men € ls (15" | m € N).

ii) We have, Av? is (s1,...,s,)-dominated if and only if My is (s1,. .., s,)-
dominated, which by Theorem 6 is equivalent to (A, .5, (Ma,,)) €Ly, (s1,....5,)-
Further, by Proposition 9, for v, (s1,...,5,) < 2, we have a = (am),,cy €
Lo (s1,ssm) (l;’i(sl i) | m e N) = Ly, (s1,..,5,) and for 2. < wy, (s1,...,5,),
@ = (m) pmen € Lo, (s1,0,80) (5 | M E€N). O

Hence, we deduce the following corollary:

Corollary 14. Let 1 < s < oo and 1 < s1,...,8, < o0o. Then:

(i) s (co,...,co;c0) contains a copy of ls if 1 < s < 2 or a copy of
Is (5" |meN) if s> 2.
(ii) As,,.. s, (Coy- - -, C05C0) contains a copy of Ly, (s,.....sn) if Vn (51,...,8n) <

2 or a copy of by, (sy,....sn) (15" | M €N) if 2 < vy, (51,...,5,).

.....

4. Summing bilinear operators defined by some methods of
summability

Our first result allows us to study the summing nature of some bilinear
operators which are induced by some method of summability. In particular,
we obtain the summing nature of the Cesaro operator on a cartesian product
of ¢g (X).

Proposition 15. Let V = (V}) Vi : X; xY; — Z be a sequence of

1€ENY

o0
bounded bilinear operators such that > V; (zi,y;) is norm convergent for all
i=1
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T = (xi>i6N € ¢o (X)’ Yy = (yi)ieN € Co (y) and let SV T Co (X) X Co (y) — Z’
Sy (z,y) = > Vi(zi,y:). Then:
i=1

(i) Sy is 1-summing if and only if all V; are 1-summing and > m (V;) < oo.
i=1

Moreover, w1 (Sy) = > m1 (Vi).

i=1
(i) Sy is 2-dominated if and only if all V; are 2-dominated and Y Ao (V;) <
i=1

1=

0o0. Moreover, Ag (Sy) = > Az (V).
i=1

Proof. (i) Assuming that Sy is l-summing, by Theorem 3, it follows that all

Sy o (04,0;) are 1-summing, > 7 (Sy o (04,04)) < oo and

1=1

m (Sy) < Zm (Sy o (oi,0i)).

i=1

Then, from Sy o (0;,0;) = V; we get that all V; are 1-summing, > 71 (Vi) < oo
i=1

and 7 (Sy) < > m (V;). Conversely, let > m (Vi) < oo. Since Sy (x,y) =

=1 =1

S Vilpi (z),pi(y) and 71 (Vi o (pi,pi)) < 71 (Vi), from Proposition 5 we get
i=1

o0
that Sy is 1-summing and 71 (Sy) < Y 71 (V).
i=1
(ii) The proof is similar to the previous case, hence we omit it. (I

In order to present our next example, we will use some methods of summabil-
ity, whose definition we will further recall. An infinite matrix of scalar elements
(aij)(i,j)eNxN is called a method of summability if given a sequence (x;),.y € co,
all the series Z;’il a;jxj are convergent and the sequence (y;),cy € co, where
Yi = D0 e

Moreover, it is well known (see [8, page 75]) that (a;;)
of summability if and only if

(i) there exists a positive constant M such that for each i € N, Z;’il lag;| <

(i,/)ENXN is a method

M;
(ii) lim;—y o0 as; = 0 for every j € N.
Let us note that a method of summability is regular in the sense of [8] if and

only if lim; e D72 cvij = 1.

Proposition 16. Let (A\;),cy C (0,00) be such that \y + --- + A\ 7 o0,

(an)pen C (0,00) such that a, ,/* oo and furthermore the sequence (*127“

is bounded. LetV = (Vi),cn, Vi 2 Xi xY; = Z be a sequence of bounded Wbiline?g:“
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operators such that sup ||Vi|| < oo and the bilinear operator Ty : co (X) X

Co (y) — Co (Z), e

Ty (z,y) = <

MV (z,01) + -+ AV (:Cnvyn)>
neN

an
Then: )
(i) Ty is 1-summing if and only if all V; are 1-summing and > /\”27(‘/1) < 0.
i=1 ¢
Moreover, m (Ty) = Y. Aima (Vi)

! a;
=1

(ii) Ty is 2-dominated if and only if all V; are 2-dominated and

Ailda (Vi)
a;
1=1

<

00. Moreover, Aq (Ty) = > %(Vl)
i=1 ’

2—fL for k<n
Ofor k>n+1
bility, Ty is well defined. Also, let us note the following formal decomposition

T (1) = <A1V1 (z17y1)7 MV (21, 1) L MV (21, 1) . >

ay ag Gnp

A2V A2V
_’_(0’ 2Va (22,92) 2 2(1”273/2),._.)_,_...

Proof. Since (ank)(n k)eNxN> Onk = is a method of summa-

Sy
ag an,

which suggests that
i=1

where
SiZXiX}/i%CO(Z),
AiVi(@i,yi) ANiVi(a,yi) NaVi (i, yi
Si($i7yi)(0,...,07 (@ y), (i y:) (= y),)

a; Qi1 ’ Aj42
Indeed, let k € N. For & = (2;),cy € co (X), ¥y = (¥i);en € co (V) we denote by

k
Ty (z,y) = ZSi (w4, 9:)
i1

geeey

)
a1 ag Ak41

_ <>\1V1 (1,91) Zle AiVi (i, yi) Ef:l AiVi (x4, vi) )

the partial sum of the series. Then
TV (‘Tay) - Tk (‘Tay)

= (0 0 Aet1 Vi1 (et 1,Yk+1) Met1Virs (e 1,Yk+1) Akt 2 Vit 2 (Thp2,Ykt2)
9 LA ) b ak+1 9 ak+2 g e Pl
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hence

HTV (x, y) T (.T, y)HCU(Z) = sup A k+1 Vit (@rt1,Yk+1)++FXkti Vit i (Tt iy Yk+a) | )

ieN Ghoti
Since
M1 Vi (Te 1, Yar1) + -+ M Vieri (T Y |
Al
Mot Vil e | lyrsall + -+ 4 N WVl 1z || 1yl
o Ok+i
(Sup |Vz'|) (Mot 1Tk | Jyesall + -+ N et | |1yg+ill)
< €N
- QAkti
A1+ A
< “(sup [Vill ) | sup [l@]l ) { sup [lwill
Ak+i i€N i>k+1 i>k+1
Mt A
< (sup 22 ) (sup il ) (sup st} (sup )
neN Qnp €N i>k+1 i>k+1
Thus

1Ty (2, 9) = Th (2,9)l| ey 2)

Mot A
< <sup7”) (supmn) (sup ||:cz-||) ( sup ||yz-||>
neN Gnp €N i>k+1 i>k+1

and since © = (zi);eny € c0(X), ¥ = Wi)jen € c0(V), it follows that
limyo0 |7V (2, y) — Tk (#,9)|l.o(z) = 0O, hence the convergence of the series
(7) is proved.
By Proposition 15, Ty is 1-summing (2-dominated) if and only if all S; are
1-summing (2-dominated) and " w1 (S;) < oo (D A2 (S;) < o0). More-
' i=1

i=1

over, m (Sy) = i m1 (S:) (A2 (Cy) = ioj Ay (V7). In order to evaluate
i=1

=1
m1 (83)(Ag (V5)), Si: X; X Y; — ¢ (Z), for (z,y) € X; X Y; note that
)\7,‘/7, z,y )‘7,‘/7, z,y )\Z‘/; :L'ay)
||Si(x,y)|60(z):H(O,...,O, (z.y) AVi(@.y) (z.9)

a; Qi1 ’ Qi42 co(2)
i ||Vi (2, i ||VilZ,
Sup{ Vi y)ll AillVi e y>||,___}
a; Qi1
i N Ai||Vi(z,y
Wi oplisup {31, 2} AV ],
Q; Q41 a;

Hence, S; : X;XY; — ¢o (Z) is 1-summing (2-dominated) if and only if V; : X; x

Y; — Z is 1-summing (2-dominated). Moreover, m (S;) = A”;ifv) (Az (S;) =

AiA;(Vi))_ |
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By considering, for instance, \; = 1, a; = i, ¢« € N, we obtain the conditions
for the bilinear Cesaro operator on cg (X) X ¢ (Y) to be l-summing or 2-
dominated. Hence we are adding a new result related to [2, Corollary 1] which
studies the summing nature of the Cesaro operator on ¢y (X) X co (V).

Corollary 17. Let V = (Vi)z‘eN7 Vi: X; XY, = Z be a sequence of bounded
bilinear operators such that sup ||V;|| < oo.
€N
() Let Cy : co (X)xco (V) = co (2), Cy (w,y) = (Ulzslittolan) )
ne

be the bilinear Cesaro operator. Then:

i is 1-summing if and only if all V; are 1-summing an L < o,

(i) Cv is 1-summing if and only if all V; are 1-summing and 3. =)

i=1
Moreover, m (Cy) = > @
i=1
(ii) Cy is 2-dominated if and only if all V; are 2-dominated and % <
i=1
0o. Moreover, Ag (Cy) = > w
i=1

(b) Let Hy : ¢y (X) x ¢o () = ¢o (2),

‘/1 ('Tlayl) + %‘/2 (:L'QayQ) + -+ %Vn (xnayn)
In(n+1)

oo = .
neN

Then: -
(i) Hy is 1-summing if and only if all V; are 1-summing and 1; % <

oo. Moreover, m (Hy) = > _i;:((i‘ﬁi)'
=1

(ii) Hy is 2-dominated if and only if all V; are 2-dominated and Z; % <

00. Moreover, Agy (Hy) = > ZIAHZ(%
i=1
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