SUMMING AND DOMINATED OPERATORS ON A CARTESIAN PRODUCT OF $c_{0}(\mathcal{X})$ SPACES

Gabriela Badea and Dumitru Popa

Abstract

We give the necessary condition for an operator defined on a cartesian product of $c_{0}(\mathcal{X})$ spaces to be summing or dominated and we show that for the multiplication operators this condition is also sufficient. By using these results, we show that $\Pi_{s}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of $l_{s}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ for $s>2$ or a copy of $l_{s}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$, for any $1 \leq s<\infty$. Also, $\Delta_{s_{1}, \ldots, s_{n}}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of $l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$ if $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq 2$ or a copy of $l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ if $2<v_{n}\left(s_{1}, \ldots, s_{n}\right)$, where $\frac{1}{v_{n}\left(s_{1}, \ldots, s_{n}\right)}=\frac{1}{s_{1}}+\cdots+\frac{1}{s_{n}}$. We find also the necessary and sufficient conditions for bilinear operators induced by some method of summability to be 1-summing or 2 -dominated.

1. Introduction and notation

In this paper we continue our study on the summing operators defined on a cartesian product of $c_{0}(\mathcal{X})$. While in [2] we deal with nuclear and multiple 1 -summing operators on a cartesian product of $c_{0}(\mathcal{X})$, here we will address the dominated and summing operators defined on the same cartesian product. The summing operators as well as the dominated ones are two possible extensions to the multilinear settings of the linear summing operator, which were considered in order to find multilinear versions of the Pietsch domination theorem. In this paper, we will study simultaneously the dominated and the summing operators on a cartesian product of $c_{0}(\mathcal{X})$.

The notations and terminology used along the paper are standard in Banach space theory, as the reader can see in the famous monographs $[5,6,15]$.

For X_{1}, \ldots, X_{n}, Y Banach spaces over the scalar field $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, we consider the Banach space $\mathcal{L}\left(X_{1}, \ldots, X_{n} ; Y\right)$ of all bounded n-linear operators, called simply multilinear operators, endowed with the operator norm

$$
\|T\|=\sup _{\left\|x_{1}\right\| \leq 1, \ldots,\left\|x_{n}\right\| \leq 1}\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\| .
$$

[^0]Let $\mathcal{X}=\left(X_{k}\right)_{k \in \mathbb{N}}$ be a sequence of Banach spaces. We denote by $c_{0}(\mathcal{X})$ the Banach space of all sequences $\left(x_{k}\right)_{k \in \mathbb{N}}$ with $x_{k} \in X_{k}$ for all $k \in \mathbb{N},\left\|x_{k}\right\|_{X_{k}} \rightarrow 0$ as $k \rightarrow \infty$, endowed with the norm $\left\|\left(x_{k}\right)_{k \in \mathbb{N}}\right\|_{c_{0}(\mathcal{X})}=\sup _{k \in \mathbb{N}}\left\|x_{k}\right\|_{X_{k}}$, see [16, page 43]. Note that for $x \in c_{0}(\mathcal{X}),\|x\|_{c_{0}(\mathcal{X})}=\sup _{k \in \mathbb{N}}\left\|p_{k}(x)\right\|_{X_{k}}$, where p_{k} : $c_{0}(\mathcal{X}) \rightarrow X_{k}$ denotes the canonical mapping defined by $p_{k}\left(x_{1}, x_{2}, \ldots,\right)=x_{k}$, $k \in \mathbb{N}$. Also for $k \in \mathbb{N}$, we consider the canonical map $\sigma_{k}: X_{k} \rightarrow c_{0}(\mathcal{X})$ defined by $\sigma_{k}(x)=(0, \ldots, 0, \underbrace{x}_{k^{t h}}, 0, \ldots)$. To avoid any possible confusion, if $\mathcal{X}_{j}=\left(X_{k}^{j}\right)_{k \in \mathbb{N}}(1 \leq j \leq n)$ is a finite system of sequences of Banach spaces we write $\sigma_{k}^{j}: X_{k}^{j} \rightarrow c_{0}\left(\mathcal{X}_{j}\right)$ respectively $p_{k}^{j}: c_{0}\left(\mathcal{X}_{j}\right) \rightarrow X_{k}^{j}$ for the canonical mappings.

Let us recall the definition of a Banach ideal of operators, see [11] and also [9].

A subclass \mathcal{A} of the class \mathcal{L} of all bounded n-linear operators between Banach spaces is called an ideal if
$\left(M_{1}\right)$ For all Banach spaces X_{1}, \ldots, X_{n}, Y the component

$$
\mathcal{A}\left(X_{1}, \ldots, X_{n} ; Y\right):=\mathcal{L}\left(X_{1}, \ldots, X_{n} ; Y\right) \cap \mathcal{A}
$$

is a linear subspace of $\mathcal{L}\left(X_{1}, \ldots, X_{n} ; Y\right)$.
$\left(M_{2}\right)$ (the ideal property) If

$$
X_{1} \xrightarrow{A_{1}} Y_{1}, \ldots, X_{n} \xrightarrow{A_{n}} Y_{n}, Y_{1} \times \cdots \times Y_{n} \xrightarrow{T} Z \xrightarrow{S} W,
$$

where all A_{j} and S are bounded linear operators, $T \in \mathcal{A}\left(X_{1}, \ldots, X_{n} ; Y\right)$, then the composition $S \circ T \circ\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{A}\left(X_{1}, \ldots, X_{n} ; W\right)$; $T \circ\left(A_{1}, \ldots, A_{n}\right): X_{1} \times \cdots \times X_{n} \rightarrow Z$ is defined by

$$
T \circ\left(A_{1}, \ldots, A_{n}\right)\left(x_{1}, \ldots, x_{n}\right)=T\left(A_{1}\left(x_{1}\right), \ldots, A_{n}\left(x_{n}\right)\right) .
$$

$\left(M_{3}\right)$ The mapping $P_{\mathbb{K}}: \mathbb{K}^{n} \rightarrow \mathbb{K}, P_{\mathbb{K}}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{1} \cdots \lambda_{n}$ belongs to \mathcal{A}. A (ω-) normed ideal $(0<\omega \leq 1)$ is a pair $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right)$, where \mathcal{A} is an ideal and $\|\cdot\|_{\mathcal{A}}: \mathcal{A} \rightarrow[0, \infty)$ is an ideal $(\omega-)$ norm, i.e.,
$\left(M_{1}^{\prime}\right)\|\cdot\|_{\mathcal{A}}$ restricted to each component is a $\left(\omega_{-}\right)$norm.
$\left(M_{2}^{\prime}\right)\left\|S \circ T \circ\left(A_{1}, \ldots, A_{n}\right)\right\|_{\mathcal{A}} \leq\|S\|\|T\|_{\mathcal{A}}\left\|A_{1}\right\| \cdots\left\|A_{n}\right\|$ in the situation of $\left(M_{2}\right)$.
$\left(M_{3}^{\prime}\right)\left\|P_{\mathbb{K}}\right\|_{\mathcal{A}}=1$ in the situation of $\left(M_{3}\right)$.
A Banach ideal of operators is a normed ideal of operators $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right)$ with the property that all the components $\left(\mathcal{A}\left(X_{1}, \ldots, X_{n} ; Y\right),\|\cdot\|_{\mathcal{A}}\right)$ are Banach spaces.

Given $0<p<\infty$ and a Banach space X, for a finite system $\left(x_{i}\right)_{1 \leq i \leq n} \subset$ X we define $l_{p}\left(x_{i} \mid 1 \leq i \leq n\right):=\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}}$ and $w_{p}\left(\left(x_{i}\right)_{1 \leq i \leq n} ; X\right):=$ $\sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{\frac{1}{p}}$. If we consider the finite system of elements $\left(x_{i}\right)_{1 \leq i \leq n}$
as a finite set A, then we denote by $w_{p}(A)=\sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{\frac{1}{p}}$. For $0<p<\infty$, we use the common notation l_{p} for the space of all scalar sequences $\lambda=\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ such that $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}<\infty,\|\lambda\|_{p}=\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{\frac{1}{p}}$. For $1 \leq p<$ ∞, we define p^{*} the conjugate of p, that is $\frac{1}{p}+\frac{1}{p^{*}}=1$.

The following notation will be used to study simultaneously the $\left(s ; s_{1}, \ldots\right.$, $\left.s_{n}\right)$-summing operators and the $\left(s_{1}, \ldots, s_{n}\right)$-dominated ones. Let n be a natural number. We define $v_{n}:[1, \infty)^{n} \rightarrow\left[\frac{1}{n}, \infty\right)$ by $\frac{1}{v_{n}\left(s_{1}, \ldots, s_{n}\right)}=\frac{1}{s_{1}}+\cdots+\frac{1}{s_{n}}$.

Let $s_{1}, \ldots, s_{n} \in[1, \infty)$ and $s \in(0, \infty)$ be such that $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq s$. A bounded multilinear operator $T: X_{1} \times \cdots \times X_{n} \rightarrow Y$ is called $\left(s ; s_{1}, \ldots, s_{n}\right)$ summing if there exists constant $C \geq 0$ such that for each $\left(x_{i}^{j}\right)_{1 \leq i \leq m} \subset X_{j}$ $(1 \leq j \leq n)$ the following relation holds

$$
l_{s}\left(T\left(x_{i}^{1}, \ldots, x_{i}^{n}\right) \mid 1 \leq i \leq m\right) \leq C w_{s_{1}}\left(\left(x_{i}^{1}\right)_{1 \leq i \leq m}\right) \cdots w_{s_{n}}\left(\left(x_{i}^{n}\right)_{1 \leq i \leq m}\right)
$$

In this case, $\pi_{s ; s_{1}, \ldots, s_{n}}(T):=\inf \{C \mid C$ as above $\}$. The class of all $\left(s ; s_{1}, \ldots\right.$, s_{n})-summing operators from $X_{1} \times \cdots \times X_{n}$ into Y is denoted by

$$
\Pi_{s ; s_{1}, \ldots, s_{n}}\left(X_{1}, \ldots, X_{n} ; Y\right) .
$$

It is well known that the class of all $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing operators is an ideal and for $s \geq 1, \pi_{s ; s_{1}, \ldots, s_{n}}(\cdot)$ is a norm, while for $s<1, \pi_{s ; s_{1}, \ldots, s_{n}}(\cdot)$ is a s-norm.

For $s \in[1, \infty)$, a $(s ; s, \ldots, s)$-summing operator will be called a s-summing operator.

If $s_{1}, \ldots, s_{n} \in[1, \infty)$ a $\left(v_{n}\left(s_{1}, \ldots, s_{n}\right) ; s_{1}, \ldots, s_{n}\right)$-summing operator $T:$ $X_{1} \times \cdots \times X_{n} \rightarrow Y$ is called $\left(s_{1}, \ldots, s_{n}\right)$-dominated and

$$
\Delta_{s_{1}, \ldots, s_{n}}(T)=\pi_{v_{n}\left(s_{1}, \ldots, s_{n}\right) ; s_{1}, \ldots, s_{n}}(T)
$$

We denote by $\Delta_{s_{1}, \ldots, s_{n}}\left(X_{1}, \ldots, X_{n} ; Y\right)$ the class of all $\left(s_{1}, \ldots, s_{n}\right)$-dominated operators from $X_{1} \times \cdots \times X_{n}$ into Y. If $v_{n}\left(s_{1}, \ldots, s_{n}\right) \geq 1$, then $\Delta_{s_{1}, \ldots, s_{n}}(\cdot)$ is a norm and if $v_{n}\left(s_{1}, \ldots, s_{n}\right)<1, \Delta_{s_{1}, \ldots, s_{n}}(\cdot)$ is a $v_{n}\left(s_{1}, \ldots, s_{n}\right)$-norm.

We will need the following obvious result whose simple proof is left to the reader.

Remark 1. (i) If $T: X_{1} \times \cdots \times X_{n} \rightarrow Y$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing, then

$$
\pi_{s ; s_{1}, \ldots, s_{n}}(T)=\sup \left\{l_{s}\left(T\left(x_{i}^{1}, \ldots, x_{i}^{n}\right) \mid 1 \leq i \leq m\right)\right\}
$$

where the supremum is taken over all systems $\left(x_{i}^{j}\right)_{1 \leq i \leq m} \subset X_{j}$ such that $w_{s_{j}}\left(\left(x_{i}^{j}\right)_{1 \leq i \leq m}\right) \leq 1(1 \leq j \leq n)$.
(ii) If $T: X_{1} \times \cdots \times X_{n} \rightarrow Y$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing, then for any $0<\varepsilon<1$ there exists $\left(x_{i}^{j}\right)_{1 \leq i \leq m} \subset X_{j}$ such that $w_{s_{j}}\left(\left(x_{i}^{j}\right)_{1 \leq i \leq m}\right) \leq 1$ $(1 \leq j \leq n)$ and $(1-\varepsilon) \pi_{s ; s_{1}, \ldots, s_{n}}(T) \leq l_{s}\left(T\left(x_{i}^{1}, \ldots, x_{i}^{n}\right) \mid 1 \leq i \leq m\right)$.

2. Summing and dominated multilinear operators on a cartesian product of $c_{0}(\mathcal{X})$ spaces

The next lemma is well-known, but for the sake of completeness we will include here its short proof.

Lemma 2. Let $1 \leq s<\infty$ and $\left(x_{i}\right)_{1 \leq i \leq k} \subset c_{0}(\mathcal{X})$. Then

$$
w_{s}\left(\left(x_{i}\right)_{1 \leq i \leq k} ; c_{0}(\mathcal{X})\right)=\sup _{n \in \mathbb{N}} w_{s}\left(\left(p_{n}\left(x_{i}\right)\right)_{1 \leq i \leq k} ; X_{n}\right) .
$$

Proof. By a well-known relation, see [12, Lemma 1.14, page 40], we have

$$
\begin{equation*}
w_{s}\left(\left(x_{i}\right)_{1 \leq i \leq k} ; c_{0}(\mathcal{X})\right)=\sup _{\left\|\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right\|_{l_{s^{*}}} \leq 1}\left\|\sum_{i=1}^{k} \lambda_{i} x_{i}\right\|_{c_{0}(\mathcal{X})} \tag{*}
\end{equation*}
$$

and then

$$
\begin{aligned}
w_{s}\left(\left(x_{i}\right)_{1 \leq i \leq k} ; c_{0}(\mathcal{X})\right) & =\sup _{\left\|\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right\|_{l_{s} k}^{k} \leq 1}\left(\sup _{n \in \mathbb{N}}\left\|p_{n}\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right)\right\|_{X_{n}}\right) \\
& =\sup _{n \in \mathbb{N}}\left(\sup _{\left\|\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right\|_{l_{s^{*}}} \leq 1}\left\|\sum_{i=1}^{k} \lambda_{i} p_{n}\left(x_{i}\right)\right\|_{X_{n}}\right) \\
& =\sup _{n \in \mathbb{N}} w_{s}\left(\left(p_{n}\left(x_{i}\right)\right)_{1 \leq i \leq k} ; X_{n}\right) \text { again by }(*) .
\end{aligned}
$$

Our next result gives a necessary condition for a bounded multilinear operator defined on a cartesian product of $c_{0}(\mathcal{X})$ to be summing or dominated.

Theorem 3. Let $n \in \mathbb{N}, 1 \leq s_{1}, \ldots, s_{n}<\infty, 0<s<\infty$ be such that $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq s$ and $T: c_{0}\left(\mathcal{X}_{1}\right) \times \cdots \times c_{0}\left(\mathcal{X}_{n}\right) \rightarrow Y$ a bounded multilinear operator. If T is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing, then all $T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right): X_{k}^{1} \times \cdots \times$ $X_{k}^{n} \rightarrow Y$ are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and $\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}} \in$ l_{s}.

Moreover, $\left\|\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}}\right\|_{s} \leq \pi_{s ; s_{1}, \ldots, s_{n}}(T)$.
Proof. The fact that all $T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)$ are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing follows from the ideal property of the class of all $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing operators. Let $m \in \mathbb{N}$ and $0<\varepsilon<1$. For $1 \leq k \leq m$, by Remark 1 , there exists

SUMMING AND DOMINATED OPERATORS ON A PRODUCT OF $c_{0}(\mathcal{X})$ SPACES 971 $F_{k} \subset \mathbb{N}, F_{k}$ a finite set and $\left(x_{k i}^{j}\right)_{i \in F_{k}} \subset X_{k}^{j}$ such that $w_{s_{j}}\left(x_{k i}^{j} \mid i \in F_{k}\right) \leq 1$ for $1 \leq j \leq n$ and

$$
\begin{aligned}
& (1-\varepsilon) \pi_{s ; s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right) \\
\leq & l_{s}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\left(x_{k i}^{1}, \ldots, x_{k i}^{n}\right) \mid i \in F_{k}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& (1-\varepsilon)\left(\sum_{k=1}^{m}\left[\pi_{s ; s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right]^{s}\right)^{\frac{1}{s}} \\
\leq & \left(\sum_{k=1}^{m} \sum_{i \in F_{k}}\left\|T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\left(x_{k i}^{1}, \ldots, x_{k i}^{n}\right)\right\|^{s}\right)^{\frac{1}{s}} \\
= & \left(\sum_{k=1}^{m} \sum_{i \in F_{k}}\left\|T\left(\sigma_{k}^{1}\left(x_{k i}^{1}\right), \ldots, \sigma_{k}^{n}\left(x_{k i}^{n}\right)\right)\right\|^{s}\right)^{\frac{1}{s}} .
\end{aligned}
$$

Further, since T is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing,

$$
\begin{aligned}
& \left(\sum_{k=1}^{m} \sum_{i \in F_{k}}\left\|T\left(\sigma_{k}^{1}\left(x_{k i}^{1}\right), \ldots, \sigma_{k}^{n}\left(x_{k i}^{n}\right)\right)\right\|^{s}\right)^{\frac{1}{s}} \\
= & \left(\sum_{i \in F_{1}}\left\|T\left(\sigma_{1}^{1}\left(x_{1 i}^{1}\right), \ldots, \sigma_{1}^{n}\left(x_{1 i}^{n}\right)\right)\right\|^{s}+\cdots+\sum_{i \in F_{m}}\left\|T\left(\sigma_{m}^{1}\left(x_{m i}^{1}\right), \ldots, \sigma_{m}^{n}\left(x_{m i}^{n}\right)\right)\right\|^{s}\right)^{\frac{1}{s}} \\
\leq & \pi_{s ; s_{1}, \ldots, s_{n}}(T) w_{s_{1}}\left(A_{1}\right) \cdots w_{s_{n}}\left(A_{n}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
A_{1} & =\left\{\sigma_{1}^{1}\left(x_{1 i}^{1}\right) \mid i \in F_{1}\right\} \cup\left\{\sigma_{2}^{1}\left(x_{2 i}^{1}\right) \mid i \in F_{2}\right\} \cup \cdots \cup\left\{\sigma_{m}^{1}\left(x_{m i}^{1}\right) \mid i \in F_{m}\right\} \\
& \subset c_{0}\left(\mathcal{X}_{1}\right) \\
& \vdots \\
A_{n} & =\left\{\sigma_{1}^{n}\left(x_{1 i}^{n}\right) \mid i \in F_{1}\right\} \cup\left\{\sigma_{2}^{n}\left(x_{n i}^{n}\right) \mid i \in F_{2}\right\} \cup \cdots \cup\left\{\sigma_{m}^{n}\left(x_{m i}^{n}\right) \mid i \in F_{m}\right\} \\
& \subset c_{0}\left(\mathcal{X}_{n}\right) .
\end{aligned}
$$

From Lemma 2 we have

$$
w_{s_{j}}\left(A_{j}\right)=\sup _{a \in \mathbb{N}} w_{s_{j}}\left(p_{a}^{j}\left(A_{j}\right)\right) \text { for } 1 \leq j \leq n
$$

Let $a \in \mathbb{N}$. For instance, by using the relations $p_{a}^{1} \circ \sigma_{b}^{1}=0$ for $b \in \mathbb{N}, b \neq a$ and $p_{a}^{1} \circ \sigma_{a}^{1}=I_{X_{a}^{1}}$, we have

$$
\begin{aligned}
p_{a}^{1}\left(A_{1}\right)= & \left\{p_{a}^{1} \circ \sigma_{1}^{1}\left(x_{1 i}^{1}\right) \mid i \in F_{1}\right\} \cup\left\{p_{a}^{1} \circ \sigma_{2}^{1}\left(x_{2 i}^{1}\right) \mid i \in F_{2}\right\} \cup \cdots \\
& \cup\left\{p_{a}^{1} \circ \sigma_{a}^{1}\left(x_{a i}^{1}\right) \mid i \in F_{a}\right\}
\end{aligned}
$$

$$
=\left\{\begin{array}{c}
\left\{x_{a i}^{1} \mid i \in F_{a}\right\} \cup\{0\} \text { for } 1 \leq a \leq m \\
\{0\} \text { for } a \geq m+1
\end{array}\right.
$$

Then

$$
w_{s_{1}}\left(A_{1}\right)=\max \left\{w_{s_{1}}\left(x_{1 i}^{1} \mid i \in F_{1}\right), \ldots, w_{s_{1}}\left(x_{m i}^{1} \mid i \in F_{m}\right)\right\} \leq 1
$$

since $w_{s_{1}}\left(x_{1 i}^{1} \mid i \in F_{1}\right) \leq 1, \ldots, w_{s_{1}}\left(x_{m i}^{1} \mid i \in F_{m}\right) \leq 1$. In a similar way,

$$
w_{s_{n}}\left(A_{n}\right)=\max \left\{w_{s_{n}}\left(x_{1 i}^{n} \mid i \in F_{1}\right), \ldots, w_{s_{n}}\left(x_{m i}^{n} \mid i \in F_{m}\right)\right\} \leq 1
$$

Thus

$$
(1-\varepsilon)\left(\sum_{k=1}^{m}\left[\pi_{s ; s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right]^{s}\right)^{\frac{1}{s}} \leq \pi_{s ; s_{1}, \ldots, s_{n}}(T)
$$

Since $0<\varepsilon<1$ and $m \in \mathbb{N}$ are arbitrary, we obtain

$$
\left(\sum_{k=1}^{\infty}\left[\pi_{s ; s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right]^{s}\right)^{\frac{1}{s}} \leq \pi_{s ; s_{1}, \ldots, s_{n}}(T)
$$

which completes the proof.
By Theorem 3 we obtain the following two consequences:
Corollary 4. Let $T: c_{0}\left(\mathcal{X}_{1}\right) \times \cdots \times c_{0}\left(\mathcal{X}_{n}\right) \rightarrow Y$ be a bounded multilinear operator.
(i) Let $1 \leq s<\infty$. If T is s-summing, then all $T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right): X_{k}^{1} \times \cdots \times$ $X_{k}^{n} \rightarrow Y$ are s-summing and $\left(\pi_{s}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}} \in l_{s}$. Moreover,

$$
\left\|\left(\pi_{s}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}}\right\|_{s} \leq \pi_{s}(T) .
$$

(ii) Let $1 \leq s_{1}, \ldots, s_{n}<\infty$. If T is $\left(s_{1}, \ldots, s_{n}\right)$-dominated, then all $T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right): X_{k}^{1} \times \cdots \times X_{k}^{n} \rightarrow Y$ are $\left(s_{1}, \ldots, s_{n}\right)$-dominated and $\left(\Delta_{s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}} \in l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$.

Moreover, $\left\|\left(\Delta_{s_{1}, \ldots, s_{n}}\left(T \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}}\right\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)} \leq \Delta_{s_{1}, \ldots, s_{n}}(T)$.
We need also the following kind of Nahoum's result, see [10, Theorem, page 5], [16, Lemma 23, page 274].

Proposition 5. Let $s_{1}, \ldots, s_{n} \in[1, \infty), s \in(0, \infty)$ be such that $v_{n}\left(s_{1}, \ldots, s_{n}\right)$ $\leq s$ and $T: X_{1} \times \cdots \times X_{n} \rightarrow Y$ a bounded multilinear operator. If there exist a sequence $\left(Z_{k}\right)_{k \in \mathbb{N}}$ of Banach spaces and a sequence of $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing operators $T_{k}: X_{1} \times \cdots \times X_{n} \rightarrow Z_{k}$ such that all T_{k} are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing, $\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(T_{k}\right)\right)_{k \in \mathbb{N}} \in l_{s}$ and $\left\|T\left(x_{1}, \ldots, x_{n}\right)\right\|_{Y}^{s} \leq \sum_{k=1}^{\infty}\left\|T_{k}\left(x_{1}, \ldots, x_{n}\right)\right\|_{Z_{k}}^{s}$ for $\left(x_{1}, \ldots, x_{n}\right) \in X_{1} \times \cdots \times X_{n}$, then T is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and

$$
\pi_{s ; s_{1}, \ldots, s_{n}}(T) \leq\left\|\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(T_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{s} .
$$

Proof. Let $\left(x_{i}^{j}\right)_{1 \leq i \leq m} \subset X_{j}(1 \leq j \leq n)$. Then

$$
\begin{aligned}
& \sum_{i=1}^{m}\left\|T\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)\right\|_{Y}^{s} \\
\leq & \sum_{i=1}^{m} \sum_{k=1}^{\infty}\left\|T_{k}\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)\right\|_{Z_{k}}^{s} \\
= & \sum_{k=1}^{\infty} \sum_{i=1}^{m}\left\|T_{k}\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)\right\|_{Z_{k}}^{s} \\
\leq & \sum_{k=1}^{\infty}\left[\pi_{s ; s_{1}, \ldots, s_{n}}\left(T_{k}\right)\right]^{s}\left[w_{s_{1}}\left(x_{i}^{1} \mid 1 \leq i \leq m\right) \cdots w_{s_{n}}\left(x_{i}^{n} \mid 1 \leq i \leq m\right)\right]^{s}
\end{aligned}
$$

By the definition of $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing operators the proof is completed.

Our next result proves that for the multiplication operator, the necessary condition from Theorem 3 is also a sufficient one.

First let us recall that for the sequences of Banach spaces $\mathcal{X}_{j}=\left(X_{k}^{j}\right)_{k \in \mathbb{N}}$ $(1 \leq j \leq n), \mathcal{Y}=\left(Y_{k}\right)_{k \in \mathbb{N}}$ and for a sequence of bounded multilinear operators $\mathcal{V}=\left(V_{k}\right)_{k \in \mathbb{N}}, V_{k}: X_{k}^{1} \times \cdots \times X_{k}^{n} \rightarrow Y_{k}$ such that $\sup _{k \in \mathbb{N}}\left\|V_{k}\right\|<\infty$, we define the multiplication operator $M_{\mathcal{V}}: c_{0}\left(\mathcal{X}_{1}\right) \times \cdots \times c_{0}\left(\mathcal{X}_{n}\right) \rightarrow c_{0}(\mathcal{Y})$ by $M_{\mathcal{V}}\left(\left(x_{k}^{1}\right)_{k \in \mathbb{N}}, \ldots,\left(x_{k}^{n}\right)_{k \in \mathbb{N}}\right):=\left(V_{k}\left(x_{k}^{1}, \ldots, x_{k}^{n}\right)\right)_{k \in \mathbb{N}}$.

Theorem 6. Let $1 \leq s_{1}, \ldots, s_{n}<\infty, 0<s<\infty$ be such that $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq$ s and $M_{\mathcal{V}}: c_{0}\left(\mathcal{X}_{1}\right) \times \cdots \times c_{0}\left(\mathcal{X}_{n}\right) \rightarrow c_{0}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing.
(ii) all V_{k} are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and $\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}} \in l_{s}$.

Moreover, $\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}}\right)=\left\|\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{s}$.
Proof. (i) \Rightarrow (ii). Since, by (i), $M_{\mathcal{V}}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing, from Theorem 3 it follows that all $M_{\mathcal{V}} \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right): X_{k}^{1} \times \cdots \times X_{k}^{n} \rightarrow c_{0}(\mathcal{Y})$ are $\left(s ; s_{1}, \ldots, s_{n}\right)$ summing, $\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}} \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}} \in l_{s}$ and

$$
\left\|\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}} \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)\right)_{k \in \mathbb{N}}\right\|_{s} \leq \pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}}\right)
$$

Since $M_{\mathcal{V}} \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)=(0, \ldots, 0, \underbrace{\sigma_{k}^{k} \circ V_{k}}_{k^{t h}}, 0, \ldots)$ and $M_{\mathcal{V}} \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)$ are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing we deduce that $\sigma_{k}^{k} \circ V_{k}$ are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and $\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}} \circ\left(\sigma_{k}^{1}, \ldots, \sigma_{k}^{n}\right)\right)=\pi_{s ; s_{1}, \ldots, s_{n}}\left(\sigma_{k}^{k} \circ V_{k}\right)$. Further, by the ideal property $p_{k}^{k} \circ \sigma_{k}^{k} \circ V_{k}=V_{k}$ are $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and $\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)=$
$\pi_{s ; s_{1}, \ldots, s_{n}}\left(p_{k}^{k} \circ \sigma_{k}^{k} \circ V_{k}\right) \leq \pi_{s ; s_{1}, \ldots, s_{n}}\left(\sigma_{k}^{k} \circ V_{k}\right)$. We deduce that
$\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}} \in l_{s}$ and $\left\|\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{s} \leq \pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}}\right)$.
(ii) $\Rightarrow(\mathrm{i})$. We have $M_{\mathcal{V}}\left(x_{1}, \ldots, x_{n}\right)=\left(V_{k}\left(p_{k}^{1}\left(x_{1}\right), \ldots, p_{k}^{n}\left(x_{n}\right)\right)\right)_{k \in \mathbb{N}}$ and from $\left\|M_{\mathcal{V}}\left(x_{1}, \ldots, x_{n}\right)\right\|_{c_{0}(\mathcal{Y})} \leq\left\|M_{\mathcal{V}}\left(x_{1}, \ldots, x_{n}\right)\right\|_{s}$ we deduce

$$
\left.\left\|M_{\mathcal{V}}\left(x_{1}, \ldots, x_{n}\right)\right\|_{c_{0}(\mathcal{Y})}^{s} \leq \sum_{k=1}^{\infty} \| V_{k} \circ\left(p_{k}^{1}, \ldots, p_{k}^{n}\right)\right)\left(x_{1}, \ldots, x_{n}\right) \|^{s}
$$

Since by (ii) and the ideal property $\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k} \circ\left(p_{k}^{1}, \ldots, p_{k}^{n}\right)\right) \leq \pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)$ and $\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}} \in l_{s}$ from Proposition $5, M_{\mathcal{V}}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and $\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}}\right) \leq\left\|\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{s}$.
Corollary 7. (a) Let $1 \leq s<\infty$ and $M_{\mathcal{V}}: c_{0}\left(\mathcal{X}_{1}\right) \times \cdots \times c_{0}\left(\mathcal{X}_{n}\right) \rightarrow c_{0}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is s-summing.
(ii) all V_{k} are s-summing and $\left(\pi_{s}\left(V_{k}\right)\right)_{k \in \mathbb{N}} \in l_{s}$.

Moreover, $\pi_{s}\left(M_{\mathcal{V}}\right)=\left\|\left(\pi_{s}\left(V_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{l_{s}}$.
(b) Let $1 \leq s_{1}, \ldots, s_{n}<\infty$ and $M_{\mathcal{V}}: c_{0}\left(\mathcal{X}_{1}\right) \times \cdots \times c_{0}\left(\mathcal{X}_{n}\right) \rightarrow c_{0}(\mathcal{Y})$. The following assertions are equivalent:
(i) $M_{\mathcal{V}}$ is $\left(s_{1}, \ldots, s_{n}\right)$-dominated.
(ii) all V_{k} are $\left(s_{1}, \ldots, s_{n}\right)$-dominated and $\left(\Delta_{s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}} \in l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$.

Moreover, $\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\mathcal{V}}\right)=\left\|\left(\Delta_{s_{1}, \ldots, s_{n}}\left(V_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$.

3. Copies of vector-valued sequences spaces in $\Pi_{s}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$

In this section our goal is to present some non-trivial examples of summing operators, as applications of the above results. Our first examples will be defined by using a technique named Average of a finite number of elements, introduced by the second named author in [13]. The idea of considering these averages was suggested by the well-known discrete form of the Rademacher means, namely the equality

$$
\int_{0}^{1}\left\|\sum_{i=1}^{m} r_{i}(t) x_{i}\right\| d t=\frac{1}{2^{m}} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in\{-1,1\}^{m}}\left\|\varepsilon_{1} x_{1}+\cdots+\varepsilon_{m} x_{m}\right\| \text {, see }[5]
$$

and it became an useful tool to define and study various examples of summing operators.

Let us now fix some notations and recall this concept.
Let m be a natural number. For $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathbb{K}^{m}$ we define the finite system denoted by Average ${ }_{1}\left(\lambda_{i} \mid 1 \leq i \leq m\right)$ as being the system with 2^{m} elements obtained by arranging in the lexicographical order of $D_{m}=\{-1,1\}^{m}$ the elements $\varepsilon_{1} \lambda_{1}+\cdots+\varepsilon_{m} \lambda_{m}$ for $\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in D_{m}$. (On $\{-1,1\}$ we consider the natural order). Thus, as sets we have

$$
\text { Average }_{1}\left(\lambda_{i} \mid 1 \leq i \leq m\right)=\left\{\varepsilon_{1} \lambda_{1}+\cdots+\varepsilon_{m} \lambda_{m} \mid\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in D_{m}\right\} .
$$

Next, if we denote the 2^{m} elements of the set Average $_{1}\left(\lambda_{i} \mid 1 \leq i \leq m\right)$ by $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{2^{m}}\right\}$ and we apply the same procedure, we define

$$
\begin{aligned}
\text { Average }_{2}\left(\lambda_{i} \mid 1 \leq i \leq m\right) & =\operatorname{Average}_{1}\left(\beta_{i} \mid 1 \leq i \leq 2^{m}\right) \\
& =\left\{\varepsilon_{1} \beta_{1}+\cdots+\varepsilon_{2^{m}} \beta_{2^{m}} \mid\left(\varepsilon_{1}, \ldots, \varepsilon_{2^{m}}\right) \in D_{2^{m}}\right\}
\end{aligned}
$$

For more details about this technique and also several related results, see [14]. Let us note that
(1) $c_{\mathbb{K}}\left\|\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right\|_{l_{1}^{m}} \leq \|$ Average $_{1}\left(\lambda_{i} \mid 1 \leq i \leq m\right)\left\|_{\infty} \leq\right\|\left(\lambda_{1}, \ldots, \lambda_{m}\right) \|_{l_{1}^{m}}$
(where $c_{\mathbb{K}}=1$ in the real case and $c_{\mathbb{K}}=\frac{1}{2}$ in the complex case) and further by Khinchin's inequality

$$
\begin{align*}
\frac{c_{\mathbb{K}}}{\sqrt{2}}\left\|\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right\|_{l_{2}^{m}} & \leq \frac{1}{2^{m}} \| \text { Average }_{2}\left(\lambda_{i} \mid 1 \leq i \leq m\right) \|_{\infty} \tag{2}\\
& \leq\left\|\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right\|_{l_{2}^{m}}
\end{align*}
$$

Let $\left(\alpha_{m i}\right)_{1 \leq i \leq m, m \in \mathbb{N}}$ be a triangular matrix of scalars, $\alpha_{m}=\left(\alpha_{m 1}, \ldots, \alpha_{m m}\right)$ and $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}}$. The sequence of averages

$$
\text { Average }_{1}\left(\alpha_{11}\right), \text { Average }_{1}\left(\alpha_{21}, \alpha_{22}\right), \ldots, \text { Average }_{1}\left(\alpha_{m i} \mid 1 \leq i \leq m\right), \ldots
$$

will be denoted by $\left(\text { Average }_{1}\left(\alpha_{m i} \mid 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}}$. From (1), we have that $\left(\text { Average }_{1}\left(\alpha_{m i} \mid 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}} \in c_{0}$ if and only if $\left|\alpha_{m 1}\right|+\cdots+\left|\alpha_{m m}\right| \rightarrow 0$ i.e., $\alpha \in c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$ and further we obtain

$$
\begin{align*}
c_{\mathbb{K}}\|\alpha\|_{c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)} & \leq \|\left(\text { Average }_{1}\left(\alpha_{m i} \mid 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}} \|_{c_{0}} \tag{3}\\
& \leq\|\alpha\|_{c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)} .
\end{align*}
$$

Next, the sequence of averages
Average $_{2}\left(\frac{1}{2} \alpha_{11}\right)$, Average $_{2}\left(\frac{1}{2^{2}} \alpha_{21}, \frac{1}{2^{2}} \alpha_{22}\right), \ldots$, Average $_{2}\left(\left.\frac{1}{2^{m}} \alpha_{m i} \right\rvert\, 1 \leq i \leq m\right), \ldots$
will be denoted by $\left(\text { Average }_{2}\left(\left.\frac{1}{2^{m}} \alpha_{m i} \right\rvert\, 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}}$. From (2), we have that $\left(\text { Average }_{2}\left(\left.\frac{1}{2^{m}} \alpha_{m i} \right\rvert\, 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}} \in c_{0}$ if and only if $\left|\alpha_{m 1}\right|^{2}+\cdots+$ $\left|\alpha_{m m}\right|^{2} \rightarrow 0$, i.e., $\alpha \in c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ and further we obtain the inequality

$$
\begin{align*}
\frac{c_{\mathbb{K}}}{\sqrt{2}}\|\alpha\|_{c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)} & \leq \|\left(\text { Average }_{2}\left(\left.\frac{1}{2^{m}} \alpha_{m i} \right\rvert\, 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}} \|_{c_{0}} \tag{4}\\
& \leq\|\alpha\|_{c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)}
\end{align*}
$$

Let us recall that for $m \in \mathbb{N}, 0<p \leq \infty, l_{p}^{m}:=\left(\mathbb{K}^{m},\|\cdot\|_{p}\right)$ and $\left(e_{k}\right)_{1 \leq k \leq m} \subset$ l_{p}^{m} is the canonical basis of the l_{p}^{m}. Let us also recall the concept of the nuclear multilinear operators, see [7, Definition 1.26]. A bounded multilinear operator $T: X_{1} \times \cdots \times X_{n} \rightarrow Y$ is called nuclear if there exist $\left(\psi_{k}^{1}\right)_{k \in \mathbb{N}} \subset$
$X_{1}^{*}, \ldots,\left(\psi_{k}^{n}\right)_{k \in \mathbb{N}} \subset X_{n}^{*},\left(y_{k}\right)_{k \in \mathbb{N}} \subset Y$ such that $\sum_{k=1}^{\infty}\left\|\psi_{k}^{1}\right\| \cdots\left\|\psi_{k}^{n}\right\|\left\|y_{k}\right\|<\infty$ and

$$
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{\infty} \psi_{k}^{1}\left(x_{1}\right) \cdots \psi_{k}^{n}\left(x_{n}\right) y_{k} \text { for }\left(x_{1}, \ldots, x_{n}\right) \in X_{1} \times \cdots \times X_{n}
$$

Such a representation is called a nuclear representation of T. In this case $\|T\|_{n u c}=\inf \left\{\sum_{k=1}^{\infty}\left\|\psi_{k}^{1}\right\| \cdots\left\|\psi_{k}^{n}\right\|\left\|y_{k}\right\|\right\}$, where the infimum is taken over all nuclear representations of T. This class, denoted by $\left(\mathcal{N},\|\cdot\|_{n u c}\right)$, is the smallest Banach ideal among all other Banach ideals of multilinear operators (for the linear case see [11, Theorem 1.7.2, page 64] and for the multilinear case, see [1, Theorem 2]).

The first results of this section study the summing nature of the multiplication operator. These results will further be used in studying the summing nature of the operator defined by Average ${ }_{1}$ and by Average ${ }_{2}$. The next result extends Theorem 11 in [4].

Proposition 8. Let $n \in \mathbb{N}, 1 \leq s_{1}, \ldots, s_{n}<\infty, 0<s<\infty$ be such that $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq s$. Let $m \in \mathbb{N}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{K}^{m}$. Then the multiplication operator $M_{\alpha}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow l_{1}^{m}, M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\alpha x_{1} \cdots x_{n}=$ $\left(\alpha_{i}\left\langle x_{1}, e_{i}\right\rangle \cdots\left\langle x_{n}, e_{i}\right\rangle\right)_{1 \leq i \leq m}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and
(i) if $0<s<1, \pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)=\|\alpha\|_{s}$;
(ii) if $1 \leq s<\infty, \pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)=\|\alpha\|_{1}$.

Proof. Let us first note that $\left\|M_{\alpha}\right\|=\|\alpha\|_{1}$.
(i) Let $0<s<1$. For all $\left(x_{1}, \ldots, x_{n}\right) \in l_{\infty}^{m} \times \cdots \times l_{\infty}^{m}$ we have

$$
\begin{aligned}
\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{1} & \leq\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{s} \\
& =\left(\sum_{i=1}^{m}\left|\alpha_{i}\right|^{s}\left|\left\langle x_{1}, e_{i}\right\rangle\right|^{s} \cdots\left|\left\langle x_{n}, e_{i}\right\rangle\right|^{s}\right)^{\frac{1}{s}} .
\end{aligned}
$$

By considering the rank one functionals $U_{i}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow \mathbb{K}, U_{i}\left(x_{1}, \ldots, x_{n}\right)=$ $\alpha_{i}\left\langle x_{1}, e_{i}\right\rangle \cdots\left\langle x_{n}, e_{i}\right\rangle(1 \leq i \leq m)$, it follows that

$$
\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{1}^{s} \leq \sum_{i=1}^{m}\left|U_{i}\left(x_{1}, \ldots, x_{n}\right)\right|^{s}
$$

By Proposition 5, we deduce that M_{α} is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing and furthermore, $\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right) \leq\left(\sum_{i=1}^{m}\left[\pi_{s ; s_{1}, \ldots, s_{n}}\left(U_{i}\right)\right]^{s}\right)^{\frac{1}{s}}=\left(\sum_{i=1}^{m}\left|\alpha_{i}\right|^{s}\right)^{\frac{1}{s}}=\|\alpha\|_{s}$. For the reverse inequality, by the definition of the $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing operators and $w_{s_{j}}\left(\left(e_{i}\right)_{1 \leq i \leq m} ; l_{\infty}^{m}\right)=1(1 \leq j \leq n)$, it follows that

$$
\left(\sum_{i=1}^{m}\left\|M_{\alpha}\left(e_{i}, \ldots, e_{i}\right)\right\|^{s}\right)^{\frac{1}{s}} \leq \pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)
$$

hence $\|\alpha\|_{s} \leq \pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)$.
(ii) Let $1 \leq s<\infty$. From $M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m} \alpha_{i}\left\langle x_{1}, e_{i}\right\rangle \ldots\left\langle x_{n}, e_{i}\right\rangle e_{i}$, we deduce $\left\|M_{\alpha}\right\|_{\text {nuc }} \leq \sum_{i=1}^{m}\left|\alpha_{i}\right|=\|\alpha\|_{1}$. However, since for each Banach ideal of multilinear operators we have always $\|\cdot\| \leq\|\cdot\|_{\mathcal{A}} \leq\|\cdot\|_{\text {nuc }}$, see [11] and also [1], we get $\|\alpha\|_{1}=\left\|M_{\alpha}\right\| \leq\left\|M_{\alpha}\right\|_{\mathcal{A}} \leq\left\|M_{\alpha}\right\|_{n u c}=\|\alpha\|_{1}$. Since $s \geq 1, \Pi_{s ; s_{1}, \ldots, s_{n}}$ is a Banach ideal and the statement follows.

Proposition 9. Let n, m be natural numbers, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{K}^{m}$. Let $1<p<\infty$ and let $M_{\alpha}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow l_{p}^{m}$ be the multiplication operator $M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\alpha x_{1} \cdots x_{n}$ and $1 \leq s_{1}, \ldots, s_{n}<\infty$.
(i) If $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq p$, then M_{α} is $\left(s_{1}, \ldots, s_{n}\right)$-dominated and

$$
\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)=\|\alpha\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)} .
$$

(ii) If $p<v_{n}\left(s_{1}, \ldots, s_{n}\right)$, then M_{α} is $\left(s_{1}, \ldots, s_{n}\right)$-dominated and

$$
\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)=\|\alpha\|_{p}
$$

Proof. Since M_{α} is a finite rank operator it is $\left(s_{1}, \ldots, s_{n}\right)$-dominated. The crucial point is the evaluation of $\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)$.
(i) We have $M_{\alpha}\left(e_{i}, \ldots, e_{i}\right)=\alpha_{i} e_{i}$ and since $w_{s_{j}}\left(\left(e_{i}\right)_{1 \leq i \leq m} ; l_{\infty}^{m}\right)=1(1 \leq$ $j \leq n)$ by the definition of $\left(s_{1}, \ldots, s_{n}\right)$-dominated operators we deduce

$$
\|\alpha\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)} \leq \Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)
$$

Also from $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq p$, for all $\left(x_{1}, \ldots, x_{n}\right) \in l_{\infty}^{m} \times \cdots \times l_{\infty}^{m}$ we have $\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{p} \leq\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$ and then

$$
\begin{aligned}
& \left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}^{v_{n}\left(s_{1}, \ldots, s_{n}\right)} \\
\leq & \left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}^{v_{n}\left(s_{1}, \ldots, s_{n}\right)} \\
= & \sum_{i=1}^{m}\left|\alpha_{i}\right|^{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left|\left\langle x_{1}, e_{i}\right\rangle\right|^{v_{n}\left(s_{1}, \ldots, s_{n}\right)} \ldots\left|\left\langle x_{n}, e_{i}\right\rangle\right|^{v_{n}\left(s_{1}, \ldots, s_{n}\right)} .
\end{aligned}
$$

From here, by Proposition 5, we deduce that

$$
\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right) \leq\left(\sum_{i=1}^{m}\left|\alpha_{i}\right|^{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\right)^{\frac{1}{v_{n}\left(s_{1}, \ldots, s_{n}\right)}}=\|\alpha\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)} .
$$

(ii) From $p<v_{n}\left(s_{1}, \ldots, s_{n}\right)$ let us define $1<t<\infty$ by $\frac{1}{p}=\frac{1}{v_{n}\left(s_{1}, \ldots, s_{n}\right)}+\frac{1}{t}$. Then, there exist $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right) \in \mathbb{K}^{m}$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \mathbb{K}^{m}$ such that $\alpha=\beta \gamma$, i.e., $\alpha_{i}=\beta_{i} \gamma_{i}, 1 \leq i \leq m$ and $\|\alpha\|_{p}=\|\beta\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\|\gamma\|_{t}$. We deduce that $M_{\alpha}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \xrightarrow{M_{\beta}} l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}^{m} \xrightarrow{M_{\gamma}} l_{p}^{m}$ is a factorization of M_{α}, that is $M_{\alpha}=M_{\gamma} \circ M_{\beta}$.

By Proposition 5, $M_{\beta}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}^{m}$ is $\left(s_{1}, \ldots, s_{n}\right)$-dominated and $\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\beta}\right) \leq\|\beta\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$. By the ideal property of $\left(s_{1}, \ldots, s_{n}\right)$ dominated operators, M_{α} is $\left(s_{1}, \ldots, s_{n}\right)$-dominated and

$$
\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right) \leq \Delta_{s_{1}, \ldots, s_{n}}\left(M_{\beta}\right)\left\|M_{\gamma}\right\| \leq\|\beta\|_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\|\gamma\|_{t}=\|\alpha\|_{p}
$$

Since $v_{n}\left(s_{1}, \ldots, s_{n}\right)>1$ we always have $\|\alpha\|_{p}=\left\|M_{\alpha}\right\| \leq \Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha}\right)$.
The next result will be used in studying the summing nature of operators defined by Average ${ }_{2}$.

Proposition 10. Let $n \in \mathbb{N}, 1 \leq s<\infty, m \in \mathbb{N}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{K}^{m}$ and $M_{\alpha}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow l_{2}^{m}, M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\alpha x_{1} \cdots x_{n}$ be the multiplication operator. Then M_{α} is s-summing and
(i) if $s \leq 2, \pi_{s}\left(M_{\alpha}\right)=\|\alpha\|_{s}$;
(ii) if $2<s, \pi_{s}\left(M_{\alpha}\right)=\|\alpha\|_{2}$.

Proof. (i) Since $s \leq 2,\|\cdot\|_{2} \leq\|\cdot\|_{s}$ and thus

$$
\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{2}^{s} \leq\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\|_{s}^{s}=\sum_{i=1}^{m}\left|\alpha_{i}\right|^{s}\left|\left\langle x_{1}, e_{i}\right\rangle\right|^{s} \cdots\left|\left\langle x_{n}, e_{i}\right\rangle\right|^{s} .
$$

Then, by Proposition $5, M_{\alpha}$ is s-summing and $\pi_{s}\left(M_{\alpha}\right) \leq\left(\sum_{i=1}^{m}\left|\alpha_{i}\right|^{s}\right)^{\frac{1}{s}}=\|\alpha\|_{s}$. Now from $w_{p}\left(\left(e_{i}\right)_{1 \leq i \leq m} ; l_{\infty}^{m}\right)=1, M_{\alpha}\left(e_{i}, \ldots, e_{i}\right)=\alpha_{i} e_{i}(1 \leq i \leq m)$ and the definition of s-summing operators, we deduce $\|\alpha\|_{s} \leq \pi_{s}\left(M_{\alpha}\right)$.
(ii) The case $n=1$. We use that in the linear case, as is well-known and easy to prove, $\pi_{2}\left(M_{\alpha}: l_{\infty}^{m} \rightarrow l_{2}^{m}\right)=\|\alpha\|_{2}$; since $2<s$, by the inclusion theorem from the linear case, we have $\|\alpha\|_{2}=\left\|M_{\alpha}\right\| \leq \pi_{s}\left(M_{\alpha}: l_{\infty}^{m} \rightarrow l_{2}^{m}\right) \leq$ $\pi_{2}\left(M_{\alpha}: l_{\infty}^{m} \rightarrow l_{2}^{m}\right)=\|\alpha\|_{2}$.

The case $n \geq 2$. We have $\left\|M_{\alpha}\right\|=\|\alpha\|_{2}$ and since always $\left\|M_{\alpha}\right\| \leq \pi_{s}\left(M_{\alpha}\right)$, we get $\|\alpha\|_{2} \leq \pi_{s}\left(M_{\alpha}\right)$. The following reasoning was suggested to us by [3, Lemma 3.2]. Since $n \geq 2$, for $\left(x_{1}, \ldots, x_{n}\right) \in l_{\infty}^{m} \times \cdots \times l_{\infty}^{m}$ we have $\left\|M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\| \leq\left\|\alpha x_{1}\right\|\left\|x_{2}\right\| \cdots\left\|x_{n}\right\|$. Then for every $\left(x_{i}^{1}\right)_{1 \leq i \leq k} \subset l_{\infty}^{m}, \ldots$, $\left(x_{i}^{k}\right)_{1 \leq i \leq k} \subset l_{\infty}^{m}$ we have

$$
\begin{aligned}
\left\|M_{\alpha}\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)\right\| & \leq\left\|\alpha x_{i}^{1}\right\|\left\|x_{i}^{2}\right\| \cdots\left\|x_{i}^{n}\right\| \\
& \leq\left\|\alpha x_{i}^{1}\right\| w_{s}\left(\left(x_{i}^{2}\right)_{1 \leq i \leq k}\right) \cdots w_{s}\left(\left(x_{i}^{n}\right)_{1 \leq i \leq k}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& \left(\sum_{i=1}^{k}\left\|M_{\alpha}\left(x_{i}^{1}, \ldots, x_{i}^{n}\right)\right\|^{s}\right)^{\frac{1}{s}} \\
\leq & \left(\sum_{i=1}^{k}\left\|\alpha x_{i}^{1}\right\|^{s}\right)^{\frac{1}{s}} w_{s}\left(\left(x_{i}^{2}\right)_{1 \leq i \leq k}\right) \cdots w_{s}\left(\left(x_{i}^{n}\right)_{1 \leq i \leq k}\right)
\end{aligned}
$$

SUMMING AND DOMINATED OPERATORS ON A PRODUCT OF $c_{0}(\mathcal{X})$ SPACES 979

$$
\begin{aligned}
& \leq \pi_{s}\left(M_{\alpha}: l_{\infty}^{m} \rightarrow l_{2}^{m}\right) w_{s}\left(\left(x_{i}^{1}\right)_{1 \leq i \leq k}\right) \cdots w_{s}\left(\left(x_{i}^{n}\right)_{1 \leq i \leq k}\right) \\
& =\|\alpha\|_{2} w_{s}\left(\left(x_{i}^{1}\right)_{1 \leq i \leq k}\right) \cdots w_{s}\left(\left(x_{i}^{n}\right)_{1 \leq i \leq k}\right) .
\end{aligned}
$$

We are now able to present two results which give a complete characterization of the summing nature for some non-trivial operators defined by Average.

We denote by $\left(\alpha_{m i}\right)_{1 \leq i \leq m, m \in \mathbb{N}}$ an infinite triangular matrix of scalars, $\alpha_{m}=$ $\left(\alpha_{m 1}, \ldots, \alpha_{m m}\right) \in \mathbb{K}^{n}, \alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}}$ and $k_{m}=\frac{(m-1) m}{2}$ for all natural numbers m.

Proposition 11. Let $n \in \mathbb{N}$ and $1 \leq s_{1}, \ldots, s_{n}<\infty, 0<s<\infty$ be such that $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq s$ and $\left(\alpha_{m i}\right)_{1 \leq i \leq m, m \in \mathbb{N}}$ be an infinite triangular matrix of scalars such that $\alpha \in l_{\infty}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$. Let $A v_{\alpha}^{1}: c_{0} \times \cdots \times c_{0} \rightarrow c_{0}$ be the operator defined by
$A v_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\text { Average }_{1}\left(\alpha_{m i}\left\langle\xi_{1}, e_{i+k_{m}}\right\rangle \cdots\left\langle\xi_{n}, e_{i+k_{m}}\right\rangle \mid 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}}$.
Then: i) for $0<s<1, A v_{\alpha}^{1}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing if and only if $\alpha \in$ $l_{s}\left(l_{s}^{m} \mid m \in \mathbb{N}\right)$.
ii) for $1 \leq s<\infty, A v_{\alpha}^{1}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing if and only if $\alpha \in$ $l_{s}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$.
Proof. Let $\left(\xi_{1}, \ldots, \xi_{n}\right) \in c_{0} \times \cdots \times c_{0}$. Then, by (1), $A v_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right) \in c_{0}$ if and only if $V_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right) \in c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$, where

$$
\begin{aligned}
& V_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\alpha_{m 1}\left\langle\xi_{1}, e_{1+k_{m}}\right\rangle \cdots\left\langle\xi_{n}, e_{1+k_{m}}\right\rangle, \ldots,\right. \\
&\left.\alpha_{m m}\left\langle\xi_{1}, e_{k_{m+1}}\right\rangle \cdots\left\langle\xi_{n}, e_{k_{m+1}}\right\rangle\right)_{m \in \mathbb{N}}
\end{aligned}
$$

and in this case, by (3), we have

$$
\begin{align*}
c_{\mathbb{K}}\left\|V_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|_{c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)} & \leq\left\|A v_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|_{c_{0}} \\
& \leq\left\|V_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|_{c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)} \tag{5}
\end{align*}
$$

This means that $A v_{\alpha}^{1}$ is well defined if and only if the operator $V_{\alpha}^{1}: c_{0} \times \cdots \times$ $c_{0} \rightarrow c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$ defined by

$$
\begin{aligned}
V_{\alpha}^{1}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\alpha_{m 1}\left\langle\xi_{1}, e_{1+k_{m}}\right\rangle \cdots\left\langle\xi_{n}, e_{1+k_{m}}\right\rangle, \ldots,\right. \\
\left.\alpha_{m m}\left\langle\xi_{1}, e_{k_{m+1}}\right\rangle \cdots\left\langle\xi_{n}, e_{k_{m+1}}\right\rangle\right)_{m \in \mathbb{N}}
\end{aligned}
$$

is a bounded multilinear operator. Further, from (5), $A v_{\alpha}^{1}$ is s-summing if and only if V_{α}^{1} is s-summing.

Now, if we consider the identification $c_{0}=c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right)$, we observe that the operator $V_{\alpha}^{1}: c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \times \cdots \times c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \rightarrow c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$ is actually $M_{\mathcal{V}}: c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \times \cdots \times c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \rightarrow c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right), M_{\mathcal{V}}=$ $\left(M_{\alpha_{m}}\right)_{m \in \mathbb{N}}$, where $M_{\alpha_{m}}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow l_{1}^{m}$ is the multiplication operator. Then $A v_{\alpha}^{1}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing if and only if $M_{\mathcal{V}}: c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \times$ $\cdots \times c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \rightarrow c_{0}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing, which by Theorem 6 is equivalent to $\left(\pi_{s ; s_{1}, \ldots, s_{n}}\left(M_{\alpha_{m}}\right)\right) \in l_{s}$. Now by Proposition 8 ,
it follows that for $0<s<1, \alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{s}\left(l_{s}^{m} \mid m \in \mathbb{N}\right)=l_{s}$ and for $1 \leq s<\infty, \alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{s}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$.

Before presenting a consequence of the above result, let us recall that a normed (ω-normed) space X contains a copy of the normed (ω-normed) space Y if there exist $T: Y \rightarrow X$ a linear operator and some constants $c_{1}, c_{2}>0$ such that $c_{1}\|y\|_{Y} \leq\|T(y)\|_{X} \leq c_{2}\|y\|_{Y}$ for $y \in Y$. From Proposition 11, we deduce:

Corollary 12. Let $0<s<\infty$ and $1 \leq s_{1}, \ldots, s_{n}<\infty$. Then
i) for $0<s<1, \Pi_{s}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of $l_{s}\left(l_{s}^{m} \mid m \in \mathbb{N}\right)$; for $1 \leq s<\infty, \Pi_{s}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of $l_{s}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)$.
ii) for $v_{n}\left(s_{1}, \ldots, s_{n}\right)<1, \Delta_{s_{1}, \ldots, s_{n}}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of

$$
l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}^{m} \mid m \in \mathbb{N}\right)
$$

for $1 \leq v_{n}\left(s_{1}, \ldots, s_{n}\right)<\infty, \Delta_{s_{1}, \ldots, s_{n}}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of

$$
l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{1}^{m} \mid m \in \mathbb{N}\right)
$$

Our next result studies the multilinear operator defined by Average ${ }_{2}$. As consequences of this result, we will identify some other copies that $\Pi_{s}\left(c_{0}, \ldots, c_{0}\right.$; $\left.c_{0}\right)$ contains.

Proposition 13. Let $1 \leq s<\infty, 1 \leq s_{1}, \ldots, s_{n}<\infty$ and $\left(\alpha_{m i}\right)_{1 \leq i \leq m, m \in \mathbb{N}}$ be an infinite triangular matrix of scalars such that $\alpha \in l_{\infty}\left(l_{2}^{m} \mid m \in \overline{\mathbb{N}}\right)$. Let $A v_{\alpha}^{2}: c_{0} \times \cdots \times c_{0} \rightarrow c_{0}$ be the operator defined by
$A v_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\text { Average }_{2}\left(\left.\frac{1}{2^{m}} \alpha_{m i}\left\langle\xi_{1}, e_{i+k_{m}}\right\rangle \cdots\left\langle\xi_{n}, e_{i+k_{m}}\right\rangle \right\rvert\, 1 \leq i \leq m\right)\right)_{m \in \mathbb{N}}$.
Then:
i) $A v_{\alpha}^{2}$ is s-summing if and only if $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{s}\left(l_{s}^{m} \mid m \in \mathbb{N}\right)=l_{s}$ if $1 \leq s \leq 2$ or $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{s}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ if $s>2$.
ii) $A v_{\alpha}^{2}$ is $\left(s_{1}, \ldots, s_{n}\right)$-dominated if and only if $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$ if $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq 2$, or $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ if $2<$ $v_{n}\left(s_{1}, \ldots, s_{n}\right)$.

Proof. Let $\left(\xi_{1}, \ldots, \xi_{n}\right) \in c_{0} \times \cdots \times c_{0}$. Then, by (2), $A v_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right) \in c_{0}$ if and only if $V_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right) \in c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$, where

$$
\begin{aligned}
& V_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\alpha_{m 1}\left\langle\xi_{1}, e_{1+k_{m}}\right\rangle \cdots\left\langle\xi_{n}, e_{1+k_{m}}\right\rangle, \ldots,\right. \\
& \alpha_{m m}\left\langle\xi_{1}, e_{k_{m+1}}\right\rangle\left.\cdots\left\langle\xi_{n}, e_{k_{m+1}}\right\rangle\right)_{m \in \mathbb{N}}
\end{aligned}
$$

and in this case, by (4), it follows that

$$
\begin{align*}
\frac{c_{K}}{\sqrt{2}}\left\|V_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|_{c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)} & \leq\left\|A v_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|_{c_{0}} \tag{6}\\
& \leq\left\|V_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right)\right\|_{c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)}
\end{align*}
$$

This means that $A v_{\alpha}^{2}$ is well defined if and only if the operator $V_{\alpha}^{2}: c_{0} \times \cdots \times$ $c_{0} \rightarrow c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ defined by

$$
\begin{aligned}
V_{\alpha}^{2}\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\alpha_{m 1}\left\langle\xi_{1}, e_{1+k_{m}}\right\rangle \cdots\left\langle\xi_{n}, e_{1+k_{m}}\right\rangle, \ldots\right. \\
\left.\alpha_{m m}\left\langle\xi_{1}, e_{k_{m+1}}\right\rangle \cdots\left\langle\xi_{n}, e_{k_{m+1}}\right\rangle\right)_{m \in \mathbb{N}}
\end{aligned}
$$

is a bounded multilinear operator. Further, from (6), $A v_{\alpha}^{2}$ is $\left(s ; s_{1}, \ldots, s_{n}\right)$ summing if and only if V_{α}^{2} is $\left(s ; s_{1}, \ldots, s_{n}\right)$-summing.

Now, if we consider the identification $c_{0}=c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right)$, we observe that the operator $V_{\alpha}^{2}: c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \times \cdots \times c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \rightarrow c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ is actually $M_{\mathcal{V}}: c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \times \cdots \times c_{0}\left(l_{\infty}^{m} \mid m \in \mathbb{N}\right) \rightarrow c_{0}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$, $M_{\mathcal{V}}=\left(M_{\alpha_{m}}\right)_{m \in \mathbb{N}}$, where $M_{\alpha_{m}}: l_{\infty}^{m} \times \cdots \times l_{\infty}^{m} \rightarrow l_{2}^{m}$ is the multiplication operator.

Let us note that the conditions stated regarding the triangular matrix assure us that $A v_{\alpha}^{2}$ is well defined.
i) We have, $A v_{\alpha}^{2}$ is s-summing if and only if $M_{\mathcal{V}}$ is s-summing, which by Theorem 6 is equivalent to $\left(\pi_{s}\left(M_{\alpha_{m}}\right)\right) \in l_{s}$. Further, by Proposition 10 we have that if $1 \leq s \leq 2, \alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{s}\left(l_{s}^{m} \mid m \in \mathbb{N}\right)$ or if $s>2, \alpha=$ $\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{s}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$.
ii) We have, $A v_{\alpha}^{2}$ is $\left(s_{1}, \ldots, s_{n}\right)$-dominated if and only if $M_{\mathcal{V}}$ is $\left(s_{1}, \ldots, s_{n}\right)$ dominated, which by Theorem 6 is equivalent to $\left(\Delta_{s_{1}, \ldots, s_{n}}\left(M_{\alpha_{m}}\right)\right) \in l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$. Further, by Proposition 9, for $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq 2$, we have $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in$ $l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}^{m} \mid m \in \mathbb{N}\right)=l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$ and for $2<v_{n}\left(s_{1}, \ldots, s_{n}\right)$, $\alpha=\left(\alpha_{m}\right)_{m \in \mathbb{N}} \in l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$.

Hence, we deduce the following corollary:
Corollary 14. Let $1 \leq s<\infty$ and $1 \leq s_{1}, \ldots, s_{n}<\infty$. Then:
(i) $\Pi_{s}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of l_{s} if $1 \leq s \leq 2$ or a copy of $l_{s}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ if $s>2$.
(ii) $\Delta_{s_{1}, \ldots, s_{n}}\left(c_{0}, \ldots, c_{0} ; c_{0}\right)$ contains a copy of $l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}$ if $v_{n}\left(s_{1}, \ldots, s_{n}\right) \leq$ 2 or a copy of $l_{v_{n}\left(s_{1}, \ldots, s_{n}\right)}\left(l_{2}^{m} \mid m \in \mathbb{N}\right)$ if $2<v_{n}\left(s_{1}, \ldots, s_{n}\right)$.

4. Summing bilinear operators defined by some methods of summability

Our first result allows us to study the summing nature of some bilinear operators which are induced by some method of summability. In particular, we obtain the summing nature of the Cesàro operator on a cartesian product of $c_{0}(\mathcal{X})$.

Proposition 15. Let $\mathcal{V}=\left(V_{i}\right)_{i \in \mathbb{N}}, V_{i}: X_{i} \times Y_{i} \rightarrow Z$ be a sequence of bounded bilinear operators such that $\sum_{i=1}^{\infty} V_{i}\left(x_{i}, y_{i}\right)$ is norm convergent for all
$x=\left(x_{i}\right)_{i \in \mathbb{N}} \in c_{0}(\mathcal{X}), y=\left(y_{i}\right)_{i \in \mathbb{N}} \in c_{0}(\mathcal{Y})$ and let $S_{\mathcal{V}}: c_{0}(\mathcal{X}) \times c_{0}(\mathcal{Y}) \rightarrow Z$, $S_{\mathcal{V}}(x, y)=\sum_{i=1}^{\infty} V_{i}\left(x_{i}, y_{i}\right)$. Then:
(i) $S_{\mathcal{V}}$ is 1-summing if and only if all V_{i} are 1-summing and $\sum_{i=1}^{\infty} \pi_{1}\left(V_{i}\right)<\infty$. Moreover, $\pi_{1}\left(S_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \pi_{1}\left(V_{i}\right)$.
(ii) $S_{\mathcal{V}}$ is 2-dominated if and only if all V_{i} are 2-dominated and $\sum_{i=1}^{\infty} \Delta_{2}\left(V_{i}\right)<$ ∞. Moreover, $\Delta_{2}\left(S_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \Delta_{2}\left(V_{i}\right)$.

Proof. (i) Assuming that $S_{\mathcal{V}}$ is 1-summing, by Theorem 3, it follows that all $S_{\mathcal{V}} \circ\left(\sigma_{i}, \sigma_{i}\right)$ are 1-summing, $\sum_{i=1}^{\infty} \pi_{1}\left(S_{\mathcal{V}} \circ\left(\sigma_{i}, \sigma_{i}\right)\right)<\infty$ and

$$
\pi_{1}\left(S_{\mathcal{V}}\right) \leq \sum_{i=1}^{\infty} \pi_{1}\left(S_{\mathcal{V}} \circ\left(\sigma_{i}, \sigma_{i}\right)\right)
$$

Then, from $S_{\mathcal{V}} \circ\left(\sigma_{i}, \sigma_{i}\right)=V_{i}$ we get that all V_{i} are 1-summing, $\sum_{i=1}^{\infty} \pi_{1}\left(V_{i}\right)<\infty$ and $\pi_{1}\left(S_{\mathcal{V}}\right) \leq \sum_{i=1}^{\infty} \pi_{1}\left(V_{i}\right)$. Conversely, let $\sum_{i=1}^{\infty} \pi_{1}\left(V_{i}\right)<\infty$. Since $S_{\mathcal{V}}(x, y)=$ $\sum_{i=1}^{\infty} V_{i}\left(p_{i}(x), p_{i}(y)\right)$ and $\pi_{1}\left(V_{i} \circ\left(p_{i}, p_{i}\right)\right) \leq \pi_{1}\left(V_{i}\right)$, from Proposition 5 we get that $S_{\mathcal{V}}$ is 1-summing and $\pi_{1}\left(S_{\mathcal{V}}\right) \leq \sum_{i=1}^{\infty} \pi_{1}\left(V_{i}\right)$.
(ii) The proof is similar to the previous case, hence we omit it.

In order to present our next example, we will use some methods of summability, whose definition we will further recall. An infinite matrix of scalar elements $\left(\alpha_{i j}\right)_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ is called a method of summability if given a sequence $\left(x_{i}\right)_{i \in \mathbb{N}} \in c_{0}$, all the series $\sum_{j=1}^{\infty} \alpha_{i j} x_{j}$ are convergent and the sequence $\left(y_{i}\right)_{i \in \mathbb{N}} \in c_{0}$, where $y_{i}=\sum_{j=1}^{\infty} \alpha_{i j} x_{j}$.

Moreover, it is well known (see [8, page 75]) that $\left(\alpha_{i j}\right)_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ is a method of summability if and only if
(i) there exists a positive constant M such that for each $i \in \mathbb{N}, \sum_{j=1}^{\infty}\left|\alpha_{i j}\right| \leq$ M;
(ii) $\lim _{i \rightarrow \infty} \alpha_{i j}=0$ for every $j \in \mathbb{N}$.

Let us note that a method of summability is regular in the sense of [8] if and only if $\lim _{i \rightarrow \infty} \sum_{j=1}^{\infty} \alpha_{i j}=1$.

Proposition 16. Let $\left(\lambda_{i}\right)_{i \in \mathbb{N}} \subset(0, \infty)$ be such that $\lambda_{1}+\cdots+\lambda_{n} \nearrow \infty$, $\left(a_{n}\right)_{n \in \mathbb{N}} \subset(0, \infty)$ such that $a_{n} \nearrow \infty$ and furthermore the sequence $\left(\frac{\lambda_{1}+\cdots+\lambda_{n}}{a_{n}}\right)_{n \in \mathbb{N}}$ is bounded. Let $\mathcal{V}=\left(V_{i}\right)_{i \in \mathbb{N}}, V_{i}: X_{i} \times Y_{i} \rightarrow Z$ be a sequence of bounded bilinear

SUMMING AND DOMINATED OPERATORS ON A PRODUCT OF $c_{0}(\mathcal{X})$ SPACES 983 operators such that $\sup _{i \in \mathbb{N}}\left\|V_{i}\right\|<\infty$ and the bilinear operator $T_{\mathcal{V}}: c_{0}(\mathcal{X}) \times$ $c_{0}(\mathcal{Y}) \rightarrow c_{0}(Z)$,

$$
T_{\mathcal{V}}(x, y)=\left(\frac{\lambda_{1} V_{1}\left(x_{1}, y_{1}\right)+\cdots+\lambda_{n} V_{n}\left(x_{n}, y_{n}\right)}{a_{n}}\right)_{n \in \mathbb{N}}
$$

Then:
(i) $T_{\mathcal{V}}$ is 1-summing if and only if all V_{i} are 1 -summing and $\sum_{i=1}^{\infty} \frac{\lambda_{i} \pi_{1}\left(V_{i}\right)}{a_{i}}<\infty$. Moreover, $\pi_{1}\left(T_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \frac{\lambda_{i} \pi_{1}\left(V_{i}\right)}{a_{i}}$.
(ii) $T_{\mathcal{V}}$ is 2-dominated if and only if all V_{i} are 2-dominated and $\sum_{i=1}^{\infty} \frac{\lambda_{i} \Delta_{2}\left(V_{i}\right)}{a_{i}}<$ ∞. Moreover, $\Delta_{2}\left(T_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \frac{\lambda_{i} \Delta_{2}\left(V_{i}\right)}{a_{i}}$.

Proof. Since $\left(\alpha_{n k}\right)_{(n, k) \in \mathbb{N} \times \mathbb{N}}, \alpha_{n k}=\left\{\begin{array}{c}\frac{\lambda_{k}}{a_{n}} \text { for } k \leq n \\ 0 \text { for } k \geq n+1\end{array}\right.$ is a method of summability, $T_{\mathcal{V}}$ is well defined. Also, let us note the following formal decomposition

$$
\begin{aligned}
T_{\mathcal{V}}(x, y)= & \left(\frac{\lambda_{1} V_{1}\left(x_{1}, y_{1}\right)}{a_{1}}, \frac{\lambda_{1} V_{1}\left(x_{1}, y_{1}\right)}{a_{2}}, \ldots, \frac{\lambda_{1} V_{1}\left(x_{1}, y_{1}\right)}{a_{n}}, \ldots\right) \\
& +\left(0, \frac{\lambda_{2} V_{2}\left(x_{2}, y_{2}\right)}{a_{2}}, \ldots, \frac{\lambda_{2} V_{2}\left(x_{2}, y_{2}\right)}{a_{n}}, \ldots\right)+\cdots
\end{aligned}
$$

which suggests that

$$
\begin{equation*}
T_{\mathcal{V}}(x, y)=\sum_{i=1}^{\infty} S_{i}\left(x_{i}, y_{i}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{i}: X_{i} \times Y_{i} \rightarrow c_{0}(Z) \\
& S_{i}\left(x_{i}, y_{i}\right)=\left(0, \ldots, 0, \frac{\lambda_{i} V_{i}\left(x_{i}, y_{i}\right)}{a_{i}}, \frac{\lambda_{i} V_{i}\left(x_{i}, y_{i}\right)}{a_{i+1}}, \frac{\lambda_{i} V_{i}\left(x_{i}, y_{i}\right)}{a_{i+2}}, \ldots\right) .
\end{aligned}
$$

Indeed, let $k \in \mathbb{N}$. For $x=\left(x_{i}\right)_{i \in \mathbb{N}} \in c_{0}(\mathcal{X}), y=\left(y_{i}\right)_{i \in \mathbb{N}} \in c_{0}(\mathcal{Y})$ we denote by

$$
\begin{aligned}
T_{k}(x, y) & =\sum_{i=1}^{k} S_{i}\left(x_{i}, y_{i}\right) \\
& =\left(\frac{\lambda_{1} V_{1}\left(x_{1}, y_{1}\right)}{a_{1}}, \ldots, \frac{\sum_{i=1}^{k} \lambda_{i} V_{i}\left(x_{i}, y_{i}\right)}{a_{k}}, \frac{\sum_{i=1}^{k} \lambda_{i} V_{i}\left(x_{i}, y_{i}\right)}{a_{k+1}}, \ldots\right)
\end{aligned}
$$

the partial sum of the series. Then

$$
\begin{aligned}
& T_{\mathcal{V}}(x, y)-T_{k}(x, y) \\
= & \left(0, \ldots, 0, \frac{\lambda_{k+1} V_{k+1}\left(x_{k+1}, y_{k+1}\right)}{a_{k+1}}, \frac{\lambda_{k+1} V_{k+1}\left(x_{k+1}, y_{k+1}\right)+\lambda_{k+2} V_{k+2}\left(x_{k+2}, y_{k+2}\right)}{a_{k+2}}, \ldots\right),
\end{aligned}
$$

hence

$$
\left\|T_{\mathcal{V}}(x, y)-T_{k}(x, y)\right\|_{c_{0}(Z)}=\sup _{i \in \mathbb{N}} \frac{\left\|\lambda_{k+1} V_{k+1}\left(x_{k+1}, y_{k+1}\right)+\cdots+\lambda_{k+i} V_{k+i}\left(x_{k+i}, y_{k+i}\right)\right\|}{a_{k+i}} .
$$

Since

$$
\begin{aligned}
& \frac{\left\|\lambda_{k+1} V_{k+1}\left(x_{k+1}, y_{k+1}\right)+\cdots+\lambda_{k+i} V_{k+i}\left(x_{k+i}, y_{k+i}\right)\right\|}{a_{k+i}} \\
\leq & \frac{\lambda_{k+1}\left\|V_{k+1}\right\|\left\|x_{k+1}\right\|\left\|y_{k+1}\right\|+\cdots+\lambda_{k+i}\left\|V_{k+i}\right\|\left\|x_{k+i}\right\|\left\|y_{k+i}\right\|}{a_{k+i}} \\
\leq & \frac{\left(\sup _{i \in \mathbb{N}}\left\|V_{i}\right\|\right)\left(\lambda_{k+1}\left\|x_{k+1}\right\|\left\|y_{k+1}\right\|+\cdots+\lambda_{k+i}\left\|x_{k+i}\right\|\left\|y_{k+i}\right\|\right)}{a_{k+i}} \\
\leq & \frac{\lambda_{k+1}+\cdots+\lambda_{k+i}}{a_{k+i}}\left(\sup _{i \in \mathbb{N}}\left\|V_{i}\right\|\right)\left(\sup _{i \geq k+1}\left\|x_{i}\right\|\right)\left(\sup _{i \geq k+1}\left\|y_{i}\right\|\right) \\
\leq & \left(\sup _{n \in \mathbb{N}} \frac{\lambda_{1}+\cdots+\lambda_{n}}{a_{n}}\right)\left(\sup _{i \in \mathbb{N}}\left\|V_{i}\right\|\right)\left(\sup _{i \geq k+1}\left\|x_{i}\right\|\right)\left(\sup _{i \geq k+1}\left\|y_{i}\right\|\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left\|T_{\mathcal{V}}(x, y)-T_{k}(x, y)\right\|_{c_{0}(Z)} \\
\leq & \left(\sup _{n \in \mathbb{N}} \frac{\lambda_{1}+\cdots+\lambda_{n}}{a_{n}}\right)\left(\sup _{i \in \mathbb{N}}\left\|V_{i}\right\|\right)\left(\sup _{i \geq k+1}\left\|x_{i}\right\|\right)\left(\sup _{i \geq k+1}\left\|y_{i}\right\|\right)
\end{aligned}
$$

and since $x=\left(x_{i}\right)_{i \in \mathbb{N}} \in c_{0}(\mathcal{X}), y=\left(y_{i}\right)_{i \in \mathbb{N}} \in c_{0}(\mathcal{Y})$, it follows that $\lim _{k \rightarrow \infty}\left\|T_{\mathcal{V}}(x, y)-T_{k}(x, y)\right\|_{c_{0}(Z)}=0$, hence the convergence of the series (7) is proved.

By Proposition 15, $T_{\mathcal{V}}$ is 1 -summing (2-dominated) if and only if all S_{i} are 1 -summing (2-dominated) and $\sum_{i=1}^{\infty} \pi_{1}\left(S_{i}\right)<\infty\left(\sum_{i=1}^{\infty} \Delta_{2}\left(S_{i}\right)<\infty\right)$. Moreover, $\pi_{1}\left(S_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \pi_{1}\left(S_{i}\right)\left(\Delta_{2}\left(C_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \Delta_{2}\left(V_{i}\right)\right)$. In order to evaluate $\pi_{1}\left(S_{i}\right)\left(\Delta_{2}\left(V_{i}\right)\right), S_{i}: X_{i} \times Y_{i} \rightarrow c_{0}(Z)$, for $(x, y) \in X_{i} \times Y_{i}$ note that

$$
\begin{aligned}
\left\|S_{i}(x, y)\right\|_{c_{0}(Z)} & =\left\|\left(0, \ldots, 0, \frac{\lambda_{i} V_{i}(x, y)}{a_{i}}, \frac{\lambda_{i} V_{i}(x, y)}{a_{i+1}}, \frac{\lambda_{i} V_{i}(x, y)}{a_{i+2}}, \ldots\right)\right\|_{c_{0}(Z)} \\
& =\sup \left\{\frac{\lambda_{i}\left\|V_{i}(x, y)\right\|}{a_{i}}, \frac{\lambda_{i}\left\|V_{i}(x, y)\right\|}{a_{i+1}}, \ldots\right\} \\
& =\left\|V_{i}(x, y)\right\| \sup \left\{\frac{\lambda_{i}}{a_{i}}, \frac{\lambda_{i}}{a_{i+1}}, \ldots\right\}=\frac{\lambda_{i}\left\|V_{i}(x, y)\right\|}{a_{i}}
\end{aligned}
$$

Hence, $S_{i}: X_{i} \times Y_{i} \rightarrow c_{0}(Z)$ is 1-summing (2-dominated) if and only if $V_{i}: X_{i} \times$ $Y_{i} \rightarrow Z$ is 1-summing (2-dominated). Moreover, $\pi_{1}\left(S_{i}\right)=\frac{\lambda_{i} \pi_{1}\left(V_{i}\right)}{a_{i}}\left(\Delta_{2}\left(S_{i}\right)=\right.$ $\left.\frac{\lambda_{i} \Delta_{2}\left(V_{i}\right)}{a_{i}}\right)$.

SUMMING AND DOMINATED OPERATORS ON A PRODUCT OF $c_{0}(\mathcal{X})$ SPACES 985

By considering, for instance, $\lambda_{i}=1, a_{i}=i, i \in \mathbb{N}$, we obtain the conditions for the bilinear Cesàro operator on $c_{0}(\mathcal{X}) \times c_{0}(\mathcal{Y})$ to be 1 -summing or 2 dominated. Hence we are adding a new result related to [2, Corollary 1] which studies the summing nature of the Cesàro operator on $c_{0}(\mathcal{X}) \times c_{0}(\mathcal{Y})$.

Corollary 17. Let $\mathcal{V}=\left(V_{i}\right)_{i \in \mathbb{N}}, V_{i}: X_{i} \times Y_{i} \rightarrow Z$ be a sequence of bounded bilinear operators such that $\sup _{i \in \mathbb{N}}\left\|V_{i}\right\|<\infty$.
(a) Let $C_{\mathcal{V}}: c_{0}(\mathcal{X}) \times c_{0}(\mathcal{Y}) \rightarrow c_{0}(Z), C_{\mathcal{V}}(x, y)=\left(\frac{V_{1}\left(x_{1}, y_{1}\right)+\cdots+V_{n}\left(x_{n}, y_{n}\right)}{n}\right)_{n \in \mathbb{N}}$ be the bilinear Cesàro operator. Then:
(i) $C_{\mathcal{V}}$ is 1 -summing if and only if all V_{i} are 1-summing and $\sum_{i=1}^{\infty} \frac{\pi_{1}\left(V_{i}\right)}{i}<\infty$.

Moreover, $\pi_{1}\left(C_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \frac{\pi_{1}\left(V_{i}\right)}{i}$.
(ii) $C_{\mathcal{V}}$ is 2-dominated if and only if all V_{i} are 2-dominated and $\sum_{i=1}^{\infty} \frac{\Delta_{2}\left(V_{i}\right)}{i}<$
∞. Moreover, $\Delta_{2}\left(C_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \frac{\Delta_{2}\left(V_{i}\right)}{i}$.
(b) Let $H_{\mathcal{V}}: c_{0}(\mathcal{X}) \times c_{0}(\mathcal{Y}) \rightarrow c_{0}(Z)$,

$$
H_{\mathcal{V}}(x, y)=\left(\frac{V_{1}\left(x_{1}, y_{1}\right)+\frac{1}{2} V_{2}\left(x_{2}, y_{2}\right)+\cdots+\frac{1}{n} V_{n}\left(x_{n}, y_{n}\right)}{\ln (n+1)}\right)_{n \in \mathbb{N}}
$$

Then:
(i) $H_{\mathcal{V}}$ is 1-summing if and only if all V_{i} are 1-summing and $\sum_{i=1}^{\infty} \frac{\pi_{1}\left(V_{i}\right)}{i \ln (i+1)}<$ ∞. Moreover, $\pi_{1}\left(H_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \frac{\pi_{1}\left(V_{i}\right)}{i \ln (i+1)}$.
(ii) $H_{\mathcal{V}}$ is 2-dominated if and only if all V_{i} are 2-dominated and $\sum_{i=1}^{\infty} \frac{\Delta_{2}\left(V_{i}\right)}{i \ln (i+1)}<$ ∞. Moreover, $\Delta_{2}\left(H_{\mathcal{V}}\right)=\sum_{i=1}^{\infty} \frac{\Delta_{2}\left(V_{i}\right)}{i \ln (i+1)}$.
Acknowledgement. We thank the referee for his/her constructive comments and remarks which improved the first version of the paper.

References

[1] G. Badea, On nuclear and multiple summing bilinear operators on $c_{0} \times c_{0}$, Quaest Math. 33 (2010), no. 2, 253-261.
[2] G. Badea and D. Popa, Swartz type results for nuclear and multiple 1-summing bilinear operators on $c_{0}(\mathcal{X}) \times c_{0}(\mathcal{Y})$, Positivity 19 (2015), no. 3, 475-487.
[3] G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Royal Irish Acad. Sect. A 97 (1997), no. 2, 145-153.
[4] R. Cilia and J. M. Gutiérrez, Nuclear and integral polynomials, J. Aust. Math. Soc. 76 (2004), no. 2, 269-280.
[5] A. Defant and K. Floret, Tensor norms and operator ideals, Math. Studies 176, NorthHolland, 1993.
[6] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, 1995.
[7] S. Dineen, Complex analysis in locally convex spaces, North Holland Math Studies, vol 57, North Holland, Amsterdam 1981.
[8] N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Pure and Applied Mathematics, vol. 7, Interscience, New York, 1958.
[9] K. Floret and D. García, On ideals of polynomials and multilinear mappings between Banach spaces, Arch. Math. (Basel) 81 (2003), no. 3, 300-308.
[10] A. Nahoum, Applications radonifiantes dans l'espace des series convergentes. II: Les résultats, Sém. Maurey-Schwartz 1972-1973, exp XXV (1973), https://www.numdam. org.
[11] A. Pietsch, Ideals of multilinear functionals, Proc. $2^{\text {nd }}$ Int. Conf. Operator Alg., Leibzig, Teubner Texte Math. 62 (1983), 185-199.
[12] _ Eigenvalues and s-numbers, Cambridge Stud. Adv. Math. 13, Cambridge University Press, 1987.
[13] D. Popa, Examples of operators on $C[0,1]$ distinguishing certain operator ideals, Arch. Math. 88 (2007), no. 4, 349-357.
$[14]$, Averages and compact, absolutely summing and nuclear operators on $C(\Omega)$, J. Korean Math. Soc. 47 (2010), no. 5, 899-924.
[15] N. Tomczak-Jagermann, Banach-Mazur distances and finite dimensional operator ideals, Pitman Monographs, vol. 38, Harlow: Longman Scientific \& Technical, 1989.
[16] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Stud. Adv. Math. 25, Cambridge University Press, 1996.

Gabriela Badea
Department of Mathematics
Ovidius University of Constanta
Bd. Mamaia 124
900527 Constanta, Romania
E-mail address: gbadea@univ-ovidius.ro
Dumitru Popa
Department of Mathematics
Ovidius University of Constanta
Bd. Mamaia 124
900527 Constanta, Romania
E-mail address: dpopa@univ-ovidius.ro

[^0]: Received May 4, 2016.
 2010 Mathematics Subject Classification. Primary 47B10, 47L20; Secondary 46B45.
 Key words and phrases. ($s ; s_{1}, \ldots s_{n}$)-summing operator, $\left(s_{1}, \ldots s_{n}\right)$-dominated operator.
 The first named author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-TE-2012-3-0042.

