Browse > Article
http://dx.doi.org/10.14317/jami.2012.30.3_4.455

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$  

Lee, Jae-Jin (Department of Mathematics, Hallym University)
Publication Information
Journal of applied mathematics & informatics / v.30, no.3_4, 2012 , pp. 455-462 More about this Journal
Abstract
The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.
Keywords
q-binomial coefficient; cyclic group; action; orbit; orbit polynomial;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Andrews, The Friedman-Joichi-Stanton monotonicity conjecture at primes, To appear, Amer.Math.Soc. DIMACS book series.
2 F.Chapoton, http://www.lacim.uqam.ca/chapoton/arbres.html.
3 K. Drudge, On the orbits of Singer groups and their subgroups, Elec. J. Comb. 9 (2002), R15.
4 M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Alg. Comb. 3 (1994), 17-76.   DOI
5 V. Reiner, D. Stanton and D. White, The Cyclic Sieving Phenomenon, J. Combin. Theory Ser. A, 108(1) (2004), 17-50.   DOI
6 B. Sagan, personal communication.
7 D. Stanton and D. White, Sieved q-Binomial Coefficients, Preprint.
8 J.R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser A 68 (1994), 372-409.   DOI