• 제목/요약/키워드: $N_2O$ reactive gas

검색결과 68건 처리시간 0.025초

N2O 반응 가스를 주입한 RF Reactive Magnetron Sputtering에 의한 ZrO2 박막의 구조 및 부식특성 연구 (Structural and Corrosive Properties of ZrO2 Thin Films using N2O as a Reactive Gas by RF Reactive Magnetron Sputtering)

  • 지승현;이석희;백종혁;김준환;윤영수
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.69-73
    • /
    • 2011
  • A $ZrO_2$ thin film as a corrosion protective layer was deposited on Zircaloy-4 (Z-4) clad material using $N_2O$ as a reactive gas by RF reactive magnetron sputtering at room temperature. The Z-4 substrate was located in plasma or out of plasma during the $ZrO_2$ deposition process to investigate mechanical and corrosive properties for the plasma immersion. Tetragonal and monoclinic phases were existed in $ZrO_2$ thin film immersed in plasma. We observed that a grain size of the $ZrO_2$ thin film immersed in plasma state is larger than that of the $ZrO_2$ thin film out of plasma state. In addition, the corrosive property of the $ZrO_2$ thin films in the plasma was characterized using the weight gains of Z-4 after the corrosion test. Compared with the $ZrO_2$ thin film immersed out of plasma, the weight gains of $ZrO_2$ thin film immersed in plasma were larger. These results indicate that the $ZrO_2$ film with the tetragonal phase in the $ZrO_2$ can protect the Z-4 from corrosive phenomena.

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.

Reactive Ion Etching of a-Si for high yield and low process cost

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제5권3호
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper, amorphous semiconductor and insulator thin film are etched using reactive ion etcher. At that time, we experiment in various RIE conditions (chamber pressure, gas flow rate, rf power, temperature) that have effects on quality of thin film. The using gases are $CF_4,\;CF_4+O_2,\;CCl_2F_2,\;CHF_3$ gases. The etching of a-Si:H thin film use $CF_4,\;CF_4+O_2$ gases and the etching of $a-SiO_2,\;a-SiN_x$ thin film use $CCl_2F_2,\;CHF_3$ gases. The $CCl_2F_2$ gas is particularly excellent because the selectivity of between a-Si:H thin film and $a-SiN_x$ thin film is 6:1. We made precise condition on dry etching with uniformity of 5%. If this dry etching condition is used, that process can acquire high yield and can cut down process cost.

Influence of Nitrogen/argon Flow Ratio on the Crystallization of Hafnium Oxynitride Films

  • Choi, Dae-Han;Choi, Jong-In;Park, Hwan-Jin;Chae, Joo-Hyun;Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.12-15
    • /
    • 2008
  • Hafnium oxynitride films have been deposited onto a silicon substrate by means of radio frequency (RF) reactive sputtering using a hafnium dioxide $(HfO_2)$ target with a variety of nitrogen! argon $(N_2/Ar)$ gas flow ratios. Auger electron spectroscopy (AES)results confirm that $N_2$ was successfully incorporated into the HfON films. An increase in the $N_2/Ar$ gas flow ratio resulted in metal oxynitride formation. The films prepared with a $N_2/Ar$ flow ratio of 20/20 sccm show (222), (530), and (611) directions of $HfO_2N_2$, and the (-111), (311) directions of $HfO_2$. From X-ray reflectometry measurements, it can be concluded that with $N_2$ incorporated into the HfON films, the film density increases. The density increases from 9.8 to $10.1g/cm^3$. XRR also reveals that the surface roughness is related to the $N_2/Ar$ flow ratio.

가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성 (Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering)

  • 이소율;최재형;한윤수;이성민;김성원
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.431-436
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.

비대칭 마그네트론 스퍼터링법에 의해 합성된 STR304 스테인리스강 박막에서의 질소와 산소의 첨가 효가 (Effect of $N_2$ and $O_2$ Properties of STS304 Stainless Steel Films Synthesized by Unbalanced Magnetron Sputtering Process)

  • 김광석;이상율;김범석;한전건
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.89-96
    • /
    • 2001
  • N- or O-doped STS304 stainless films were synthesized by an unbalanced magnetron sputtering process with various argon and reactive gas ($N_2$, $O_2$) mixtures. These films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and Knoop microhardness tester. The Results from X-ray diffraction (XRD) analysis showed that a STS304 stainless steel film synthesized without reactive gas using a bulk STS304 stainless steel target had a ferrite bcc structure ($\alpha$ phase), while the N-doped STS304 stainless film was consisted of a nitrogen supersaturated fcc structure, which hsa a strong ${\gamma}$(200) phase. In the O-doped films, oxide Phases ($Fe_2$$O_3$ and $Cr_2$$O_3$) were observed from the films synthesized under an excess $O_2$ flow rate of 9sccm. AES analysis showed that nitrogen content in N-doped films increased as the nitrogen flow rate increased. Approximately 43 at.%N in the N-doped film was measured using a nitrogen flow rate of 8sccm. In O-doped film, approximately 15 at.%O was detected using a $O_2$ flow rate of 12sccm. the Knoop microhardness value of N-doped film using a nitrogen flow rate of 8 sccm was measured to be approximately $H_{ k}$ 1200 and this high value could be attributed to the fine grain size and increased residual stress in the N-doped film.

  • PDF

Cu/CuO/Polyimide 시스템의 접착 및 계면화학 반응 (Adhesion and Interface Chemical Reactions of Cu/CuO/Polyimide System)

  • 이경운;채홍철;최철민;김명한
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.61-67
    • /
    • 2007
  • The magnetron reactive sputtering was adopted to deposit CuO buffer layers on the polyimide surfaces for increasing the adhesion strength between Cu thin films and polyimide, varying $O_2$ gas flow rate from 1 to 5 sccm. The CuO oxide was formed through all the $O_2$ gas flow rates of 1 to 5 sccm, showing the highest value at the 3 sccm $O_2$ gas flow rate. The XPS analysis revealed that the $Cu_2O$ oxide was also formed with a significant ratio during the reactive sputtering. The adhesion strength is mainly dependent on the amount of CuO in the buffer layers, which can react with C-O-C or C-N bonds on the polyimide surfaces. The adhesion strength of the multi-layered Cu/buffer layer/polyimide specimen decreased linearly as the heating temperature increased to $300^{\circ}C$, even though there showd no significant change in the chemical state at the polyimide interface. This result is attributed to the decrease in surface roughness of deposited copper oxide on the polyimide, when it is heated.

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

$CF_4$$O_2$혼합가스를 이용한 산화막과 질화막의 선택적 식각에 관한 연구 (Selective etch of silicon nitride, and silicon dioxide upon $O_2$ dilution of $CF_4$ plasmas)

  • 김주민;원태영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권1호
    • /
    • pp.90-94
    • /
    • 1995
  • Reactive Ion Etching(RIE) of Si$_{3}$N$_{4}$ in a CF$_{4}$/O$_{2}$ gas plasma exhibits such good anisotropic etching properties that it is widely employed in current VLSI technology. However, the RIE process can cause serious damage to the silicon surface under the Si$_{3}$N$_{4}$ layer. When an atmospheric pressure chemical vapor deposited(APCVD) SiO$_{2}$ layer is used as a etch-stop material for Si$_{3}$N$_{4}$, it seems inevitable to get a good etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$. Therefore, we have undertaken thorough study of the dependence of the etch rate of Si$_{3}$N$_{4}$ plasmas on $O_{2}$ dilution, RF power, and chamber pressure. The etch selectivity of Si$_{3}$N$_{4}$ with respect to SiO$_{2}$ has been obtained its value of 2.13 at the RF power of 150 W and the pressure of 110 mTorr in CF$_{4}$ gas plasma diluted with 25% $O_{2}$ by flow rate.

  • PDF

Measurement of Electron Temperature and Number Density and Their Effects on Reactive Species Formation in a DC Underwater Capillary Discharge

  • Ahmed, Muhammad Waqar;Rahman, Md. Shahinur;Choi, Sooseok;Shaislamov, Ulugbek;Yang, Jong-Keun;Suresh, Rai;Lee, Heon-Ju
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.118-128
    • /
    • 2017
  • The scope of this work is to determine and compare the effect of electron temperature ($T_e$) and number density ($N_e$) on the yield rate and concentration of reactive chemical species ($^{\bullet}OH$, $H_2O_2$ and $O_3$) in an argon, air and oxygen injected negative DC (0-4 kV) capillary discharge with water flow(0.1 L/min). The discharge was created between tungsten pin-to pin electrodes (${\Phi}=0.5mm$) separated by a variable distance (1-2 mm) in a quartz capillary tube (2 mm inner diameter, 4 mm outer diameter), with various gas injection rates (100-800 sccm). Optical emission spectroscopy (OES) of the hydrogen Balmer lines was carried out to investigate the line shapes and intensities as functions of the discharge parameters such as the type of gas, gas injection rate and inter electrode gap distances. The intensity ratio method was used to calculate $T_e$ and Stark broadening of Balmer ${\beta}$ lines was adopted to determine $N_e$. The effects of $T_e$ and $N_e$ on the reactive chemical species formation were evaluated and presented. The enhancement in yield rate of reactive chemical species was revealed at the higher electron temperature, higher gas injection rates, higher discharge power and larger inter-electrode gap. The discharge with oxygen injection was the most effective one for increasing the reactive chemical species concentration. The formation of reactive chemical species was shown more directly related to $T_e$ than $N_e$ in a flowing water gas injected negative DC capillary discharge.