Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.6.431

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering  

Lee, Soyul (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
Choi, Jae-Hyeong (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
Han, Yoonsoo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Powder Materials / v.24, no.6, 2017 , pp. 431-436 More about this Journal
Abstract
SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.
Keywords
SiAlON; Gas-pressure sintering; Phase formation; Densification; Hardness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. O. Ezugwu, J. Bonney and Y. Yamane: J. Mater. Process. Technol., 134 (2003) 233.   DOI
2 E. O. Ezugwu: Int. J. Mach. Tool. Manuf., 45 (2005) 1353.   DOI
3 N. C. Acikbas and O. Demir: Ceram. Inter., 39 (2013) 3249.   DOI
4 B. Bitterlich, S. Bitsch and K. Friederich: J. Eur. Ceram. Soc., 28 (2008) 989.   DOI
5 Y. M. Chiang, D. Birnie III and W. D. Kingery: Physcal Ceramics- Principles for Ceramic Science and Engineering, John Wiley & Sons, (1997) 69.
6 V. Izhevskiy, L. Genova, J. Bressiani and F. Aldinger: J. Eur. Ceram. Soc., 20 (2000) 2275.   DOI
7 A. Rosenflanz: Curr. Opin. Solid State Mater. Sci., 4 (1999) 453.   DOI
8 H. Mandal: J. Eur. Ceram. Soc., 19 (1999) 2349.   DOI
9 M. Mitomo, R. J. Xie and N. Hirosaki: J. Korean Ceram. Soc., 43 (2006) 451.   DOI
10 A. Rosenflanz and I. W. Chen: J. Eur. Ceram. Soc., 19 (1999) 2325.   DOI
11 I. W. Chen and A. Rosenflanz: Nature, 389 (1997) 701.   DOI
12 N. C. Acikbas, H. Yurdakul, H. Mandal, F. Kara, S. Turan, A. Kara and B. Bitterlich: J. Eur. Ceram. Soc., 32 (2012) 1321.   DOI