Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.5.118

Measurement of Electron Temperature and Number Density and Their Effects on Reactive Species Formation in a DC Underwater Capillary Discharge  

Ahmed, Muhammad Waqar (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
Rahman, Md. Shahinur (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
Choi, Sooseok (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
Shaislamov, Ulugbek (Institute for Nuclear Science & Technology, Jeju National University)
Yang, Jong-Keun (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
Suresh, Rai (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
Lee, Heon-Ju (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
Publication Information
Applied Science and Convergence Technology / v.26, no.5, 2017 , pp. 118-128 More about this Journal
Abstract
The scope of this work is to determine and compare the effect of electron temperature ($T_e$) and number density ($N_e$) on the yield rate and concentration of reactive chemical species ($^{\bullet}OH$, $H_2O_2$ and $O_3$) in an argon, air and oxygen injected negative DC (0-4 kV) capillary discharge with water flow(0.1 L/min). The discharge was created between tungsten pin-to pin electrodes (${\Phi}=0.5mm$) separated by a variable distance (1-2 mm) in a quartz capillary tube (2 mm inner diameter, 4 mm outer diameter), with various gas injection rates (100-800 sccm). Optical emission spectroscopy (OES) of the hydrogen Balmer lines was carried out to investigate the line shapes and intensities as functions of the discharge parameters such as the type of gas, gas injection rate and inter electrode gap distances. The intensity ratio method was used to calculate $T_e$ and Stark broadening of Balmer ${\beta}$ lines was adopted to determine $N_e$. The effects of $T_e$ and $N_e$ on the reactive chemical species formation were evaluated and presented. The enhancement in yield rate of reactive chemical species was revealed at the higher electron temperature, higher gas injection rates, higher discharge power and larger inter-electrode gap. The discharge with oxygen injection was the most effective one for increasing the reactive chemical species concentration. The formation of reactive chemical species was shown more directly related to $T_e$ than $N_e$ in a flowing water gas injected negative DC capillary discharge.
Keywords
Underwater capillary discharge; Emission spectroscopy; Line ratio method; Stark broadening; Electron temperature; Electron number density; Reactive chemical species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Mededovic and B. R. Locke. J. Phys. D: Appl. Phys. 40, 7734 (2007).   DOI
2 Y. Itikawa and N. Mason J. Phys. Chem. Ref. Data 22, 341 (2005).
3 P. Bruggeman and D. C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010).   DOI
4 C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Plasma Sources Sci. Technol. 12, 125(2003).   DOI
5 P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M. G. Kong, Y. A. Gonzalvo, C. Leys, and D. C. Schram, Plasma Sources Sci. Technol. 19, 015016 (2010).   DOI
6 R. Miotk, B. Hrycak, M. Jasinski, and J. Mizeraczyk, J. Phys. Conf. Ser. 406 012033, (2012).   DOI
7 P. J. Brandhuber, G. Korshin. Methods for detection of residual concentration of hydrogen peroxide in advance oxidation processes, Water Reuse foundation, Alexandria, VA, 2009.
8 G. Eisenberg. Ind. Eng. Chem. Anal. Ed. 15, 327 (1943).   DOI
9 F. D. Baerdemaeker, M. Simek, and C. Leys. J. Phys. D: Appl. Phys. 40, 2801 (2007).   DOI
10 H. Bader, J. Hoigne. Water Res. 15, 449, (1981).   DOI
11 J. Majewski, P. Electrotechniczny, Electrical Review 88, 253 (2012).
12 J. G. Jacangelo, D. J. Askenaizer, and K. Schwab. J. Water Health. 4, Suppl. 1, 1 (2006).   DOI
13 Y. Yang, Ph.D. thesis, Drexel University, 2011.
14 P. Rumbach, M. Witzke, R. M. Sankaran, and D. B. Go, Proc. ESA Annual Meeting on Electrostatics, June 11-13, 2013. Cocoa Beach, FL.
15 B. R. Locke, and KY Shih, Plasma Sources Sci. Technol. 20, 034006 (2011).   DOI
16 S. H. Song, Y. Yang, P. Chabert, and M. J. Kushner, Phys. Plasmas.21, 093512, (2014).   DOI
17 N. V. Ruma, P. Lukes, N. Aoki, E. Spetlikova, S.H.R. Hosseini, T. Sakugawa, and H. Akiyama, J. Phys. D: Appl. Phys. 46, 125202 (2013).   DOI
18 I. Halamov, A. Nikiforov, and F. Krcma, Christophe Leys, J. Phys. D, Conference Series 516, 012007 (2014).   DOI
19 J. Liangliang, Z. Shuai, S. Mingrong, and X. Yu, Plasma Sci. Technol. 14, 111, (2013).
20 S.G. Belostotskiy, R. Khandelwal, Q. Wang, V.M. Donnelly, D.J. Economou, and N. Sadeghi, Appl. Phys. Lett. 92, 6, (2008).
21 F. S. V. Prada, Ph.D. thesis, Dublin City University, 2005.
22 P. Bruggeman, D. Schram, M. A. Gonzalez, R. Rego, M. G. Kong, and C. Leys, Plasma Sources Sci. and Technol. 18, 025017 (2009).   DOI
23 D. E. Kelleher, W. L. Wiese, V. Helbig, R. L. Greene, and D. H. Oza, Phys. Scr. T47, 75 (1993).   DOI
24 Z. Mijatovic, D. Nikolic, R. Kobilarov, M. Ivkovic, , and J. Quant. Spectrosc. Radiat. Transfer 111, 990 (2010).   DOI
25 M. A. Gigosos, M. A. Gonzalez, and V. Cardenoso, Acta, Part B. 58, 1489 (2003).   DOI
26 M. W. Ahmed, J. K. Yang, Y. S. Mok, Y. H. Yu, and H. J. Lee, J. Korean Phys. Soc. 65, 1404, (2014).   DOI
27 D. M. Devia, L. V. Rodriguez-Restrepo, and E. restrepo-Parra, Ing. Cienc. 11, 239 (2015).   DOI
28 International Atomic Energy Agency https://www-amdis.iaea.org
29 W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data, 38, 565 (2009).   DOI
30 D. Mariotti, A. Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Appl. Phys. 101, 013307, (2007).   DOI
31 S. Hofmann, A. F. H. van Gessel, T. Verreycken, and P. Bruggeman, Plasma Sources Sci. Technol. 20, 065010 (2011).   DOI
32 P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, Plasma Sources Sci. Technol. 23, 023001 (2014).   DOI
33 M. Jasinski, Z. Zakrzewski, and J. Mizeraczyk, Czech. J. Phys. 56, B787 (2006).   DOI