DOI QR코드

DOI QR Code

Measurement of Electron Temperature and Number Density and Their Effects on Reactive Species Formation in a DC Underwater Capillary Discharge

  • Ahmed, Muhammad Waqar (Department of Nuclear, Energy and Chemical Engineering, Jeju National University) ;
  • Rahman, Md. Shahinur (Department of Nuclear, Energy and Chemical Engineering, Jeju National University) ;
  • Choi, Sooseok (Department of Nuclear, Energy and Chemical Engineering, Jeju National University) ;
  • Shaislamov, Ulugbek (Institute for Nuclear Science & Technology, Jeju National University) ;
  • Yang, Jong-Keun (Department of Nuclear, Energy and Chemical Engineering, Jeju National University) ;
  • Suresh, Rai (Department of Nuclear, Energy and Chemical Engineering, Jeju National University) ;
  • Lee, Heon-Ju (Department of Nuclear, Energy and Chemical Engineering, Jeju National University)
  • Received : 2017.08.23
  • Accepted : 2017.08.30
  • Published : 2017.09.30

Abstract

The scope of this work is to determine and compare the effect of electron temperature ($T_e$) and number density ($N_e$) on the yield rate and concentration of reactive chemical species ($^{\bullet}OH$, $H_2O_2$ and $O_3$) in an argon, air and oxygen injected negative DC (0-4 kV) capillary discharge with water flow(0.1 L/min). The discharge was created between tungsten pin-to pin electrodes (${\Phi}=0.5mm$) separated by a variable distance (1-2 mm) in a quartz capillary tube (2 mm inner diameter, 4 mm outer diameter), with various gas injection rates (100-800 sccm). Optical emission spectroscopy (OES) of the hydrogen Balmer lines was carried out to investigate the line shapes and intensities as functions of the discharge parameters such as the type of gas, gas injection rate and inter electrode gap distances. The intensity ratio method was used to calculate $T_e$ and Stark broadening of Balmer ${\beta}$ lines was adopted to determine $N_e$. The effects of $T_e$ and $N_e$ on the reactive chemical species formation were evaluated and presented. The enhancement in yield rate of reactive chemical species was revealed at the higher electron temperature, higher gas injection rates, higher discharge power and larger inter-electrode gap. The discharge with oxygen injection was the most effective one for increasing the reactive chemical species concentration. The formation of reactive chemical species was shown more directly related to $T_e$ than $N_e$ in a flowing water gas injected negative DC capillary discharge.

Keywords

References

  1. J. G. Jacangelo, D. J. Askenaizer, and K. Schwab. J. Water Health. 4, Suppl. 1, 1 (2006). https://doi.org/10.2166/wh.2006.026
  2. Y. Yang, Ph.D. thesis, Drexel University, 2011.
  3. P. Rumbach, M. Witzke, R. M. Sankaran, and D. B. Go, Proc. ESA Annual Meeting on Electrostatics, June 11-13, 2013. Cocoa Beach, FL.
  4. B. R. Locke, and KY Shih, Plasma Sources Sci. Technol. 20, 034006 (2011). https://doi.org/10.1088/0963-0252/20/3/034006
  5. S. H. Song, Y. Yang, P. Chabert, and M. J. Kushner, Phys. Plasmas.21, 093512, (2014). https://doi.org/10.1063/1.4896711
  6. N. V. Ruma, P. Lukes, N. Aoki, E. Spetlikova, S.H.R. Hosseini, T. Sakugawa, and H. Akiyama, J. Phys. D: Appl. Phys. 46, 125202 (2013). https://doi.org/10.1088/0022-3727/46/12/125202
  7. I. Halamov, A. Nikiforov, and F. Krcma, Christophe Leys, J. Phys. D, Conference Series 516, 012007 (2014). https://doi.org/10.1088/1742-6596/516/1/012007
  8. J. Liangliang, Z. Shuai, S. Mingrong, and X. Yu, Plasma Sci. Technol. 14, 111, (2013).
  9. S.G. Belostotskiy, R. Khandelwal, Q. Wang, V.M. Donnelly, D.J. Economou, and N. Sadeghi, Appl. Phys. Lett. 92, 6, (2008).
  10. F. S. V. Prada, Ph.D. thesis, Dublin City University, 2005.
  11. P. Bruggeman, D. Schram, M. A. Gonzalez, R. Rego, M. G. Kong, and C. Leys, Plasma Sources Sci. and Technol. 18, 025017 (2009). https://doi.org/10.1088/0963-0252/18/2/025017
  12. D. E. Kelleher, W. L. Wiese, V. Helbig, R. L. Greene, and D. H. Oza, Phys. Scr. T47, 75 (1993). https://doi.org/10.1088/0031-8949/1993/T47/011
  13. Z. Mijatovic, D. Nikolic, R. Kobilarov, M. Ivkovic, , and J. Quant. Spectrosc. Radiat. Transfer 111, 990 (2010). https://doi.org/10.1016/j.jqsrt.2010.01.005
  14. M. A. Gigosos, M. A. Gonzalez, and V. Cardenoso, Acta, Part B. 58, 1489 (2003). https://doi.org/10.1016/S0584-8547(03)00097-1
  15. M. W. Ahmed, J. K. Yang, Y. S. Mok, Y. H. Yu, and H. J. Lee, J. Korean Phys. Soc. 65, 1404, (2014). https://doi.org/10.3938/jkps.65.1404
  16. D. M. Devia, L. V. Rodriguez-Restrepo, and E. restrepo-Parra, Ing. Cienc. 11, 239 (2015). https://doi.org/10.17230/ingciencia.11.21.12
  17. International Atomic Energy Agency https://www-amdis.iaea.org
  18. W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data, 38, 565 (2009). https://doi.org/10.1063/1.3077727
  19. D. Mariotti, A. Y. Shimizu, T. Sasaki, and N. Koshizaki, J. Appl. Phys. 101, 013307, (2007). https://doi.org/10.1063/1.2409318
  20. S. Hofmann, A. F. H. van Gessel, T. Verreycken, and P. Bruggeman, Plasma Sources Sci. Technol. 20, 065010 (2011). https://doi.org/10.1088/0963-0252/20/6/065010
  21. P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, Plasma Sources Sci. Technol. 23, 023001 (2014). https://doi.org/10.1088/0963-0252/23/2/023001
  22. M. Jasinski, Z. Zakrzewski, and J. Mizeraczyk, Czech. J. Phys. 56, B787 (2006). https://doi.org/10.1007/s10582-006-0285-1
  23. S. Mededovic and B. R. Locke. J. Phys. D: Appl. Phys. 40, 7734 (2007). https://doi.org/10.1088/0022-3727/40/24/021
  24. Y. Itikawa and N. Mason J. Phys. Chem. Ref. Data 22, 341 (2005).
  25. P. Bruggeman and D. C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010). https://doi.org/10.1088/0963-0252/19/4/045025
  26. C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Plasma Sources Sci. Technol. 12, 125(2003). https://doi.org/10.1088/0963-0252/12/2/301
  27. P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M. G. Kong, Y. A. Gonzalvo, C. Leys, and D. C. Schram, Plasma Sources Sci. Technol. 19, 015016 (2010). https://doi.org/10.1088/0963-0252/19/1/015016
  28. R. Miotk, B. Hrycak, M. Jasinski, and J. Mizeraczyk, J. Phys. Conf. Ser. 406 012033, (2012). https://doi.org/10.1088/1742-6596/406/1/012033
  29. P. J. Brandhuber, G. Korshin. Methods for detection of residual concentration of hydrogen peroxide in advance oxidation processes, Water Reuse foundation, Alexandria, VA, 2009.
  30. G. Eisenberg. Ind. Eng. Chem. Anal. Ed. 15, 327 (1943). https://doi.org/10.1021/i560117a011
  31. F. D. Baerdemaeker, M. Simek, and C. Leys. J. Phys. D: Appl. Phys. 40, 2801 (2007). https://doi.org/10.1088/0022-3727/40/9/021
  32. H. Bader, J. Hoigne. Water Res. 15, 449, (1981). https://doi.org/10.1016/0043-1354(81)90054-3
  33. J. Majewski, P. Electrotechniczny, Electrical Review 88, 253 (2012).