• 제목/요약/키워드: $NO_x$ sensor

검색결과 113건 처리시간 0.023초

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • 한국재료학회지
    • /
    • 제34권5호
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

마이크로 가공 기술을 이용한 강유전체 박막 초전형 적외선 센서 (Pyroelectric infrared microsensors made by micromachining technology)

  • 최준임
    • 전자공학회논문지D
    • /
    • 제35D권4호
    • /
    • pp.93-100
    • /
    • 1998
  • Pyoelectric infrared detectors based on La-modified PbTiO3 (PLT) thin films have been fabricated by RF magnetron sputtering and micromachining technology. The detectors form Pb$_{1-x}$ La$_{x}$Ti$_{1-x}$ O$_{3}$ (x=0.05) thin film ferroelectric capacitors epitaxially grown by RF magnetron sputtering on Pt/MgO (100) substrate. The sputtered PLT thin film exhibits highly c-axis oriented crystal struture that no poling trealization for sensing applications is required. This is an essential factor to increase the yield for realization of an infrared image sensor. Micromachining technology is used to lower the thermal mass of the detector by giving maximum sensor efficiency. Polyimide is coated on top of the sensing elements to support the fragile structure and the backside of the MgO substrate is selectively eteched to reduce the heat loss. The sensing element exhibited a very high detectivity D* of 8.5*10$^{8}$ cm..root.Hz/W at room temperature and it is about 100 times higher than the case of micromachining technology is not used. a sensing system that detects the position as well as the existence of a human body is realized using the array sensor.sor.

  • PDF

CMOS x-ray 라인 스캔 센서 설계 (Design of a CMOS x-ray line scan sensors)

  • 허창원;장지혜;김려연;허성근;김태우;하판봉;김영희
    • 한국정보통신학회논문지
    • /
    • 제17권10호
    • /
    • pp.2369-2379
    • /
    • 2013
  • 본 논문에서는 의료영상 뿐만 아니라 비파괴검사 등에 활용되고 있는 CMOS x-ray 라인 스캔 센서를 설계하였다. x-ray 라인 스캔 센서는 512열${\times}$4행의 픽셀 어레이(pixel array)를 갖고 있으며, DC-DC 변환기(converter)를 내장하였다. Binning 모드를 이용하여 픽셀 사이즈가 $100{\mu}m$, $200{\mu}m$, $400{\mu}m$이 되도록 선택할 수 있도록 하기 위해 no binning 모드, $2{\times}2$ binning 모드와 $4{\times}4$ binning 모드를 지원하는 픽셀 회로를 새롭게 제안하였다. 그리고 power supply noise와 입력 common mode noise에 둔감한 이미지 신호인 fully differential 신호를 출력하도록 설계하였다. $0.18{\mu}m$ x-ray CMOS 이미지 센서 공정을 이용하여 설계된 라인 스캔 센서의 레이아웃 면적은 $51,304{\mu}m{\times}5,945{\mu}m$ 이다.

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam;Yu, Yeon Tae
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.225-230
    • /
    • 2019
  • $Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구 (A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors)

  • 한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF

SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서 (Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network)

  • 김유종;박소영;이정석;이세형;우경완;이상현;이문석
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향 (Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method)

  • 김석봉;이대식;이덕동;허증수
    • 센서학회지
    • /
    • 제10권2호
    • /
    • pp.118-124
    • /
    • 2001
  • 입자들이 용액에 녹아있을 때 pH에 따라서 다른 zeta-potential을 가지게 되며, 이것은 입자의 분산상태에 영향을 주게 된다. NO 센서에서 $WO_3$ 입자의 크기는 감도에 큰 영향을 끼치므로 Sol-Coprecipitation법에 의한 $WO_3$ 센서 제조 시에 $WO_3$ precursor 상태에서의 pH의 영향을 알아보았다. 먼저 $WO_3$ precursor의 전기적 포텐셜을 측정하여 pH가 2에서 7로 변함에 따라 mobility가 증가하여 7일 때에 가장 큰 분산도를 가진 것을 알 수 있었고, 이는 powder 제조 후 입도 분석, 감지막의 XRD peak, 표면사진으로부터 확인 할 수 있었다. 결과적으로 감도 특성에도 영향을 끼쳐 pH=7에서 제조한 센서가 다른 pH에서 제조한 센서보다 감도가 우수한 것으로 나타났다.

  • PDF

Pd 나노입자가 코팅된 β-Bi2O3 나노와이어의 NO2 검출 특성 (NO2 Sensing Properties of β-Bi2O3 Nanowires Sensor Coated with Pd Nanoparticles)

  • 박성훈;강우승
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.303-308
    • /
    • 2015
  • Pd-functionalized ${\beta}-Bi_2O_3$ nanowires are synthesized by thermal evaporation of Bi powder using VLS mechanism followed by Pd coating and annealing. In this study, sensing properties of Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor to selected concentrations of $NO_2$ gas were examined. Scanning electron microscopy showed that the nanowires with diameters in a range of 100 - 200 nm and lengths of up to a few tens of micrometers. Transmission electron microscopy and X-ray diffraction confirmed that the products corresponded to the nanowires of ${\beta}-Bi_2O_3$ crystals and Pd nanoparticles. Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor showed an enhanced sensing performance to $NO_2$ gas compared to as-synthesized ${\beta}-Bi_2O_3$ nanowires sensor. As synthesized and Pd-functionalized ${\beta}-Bi_2O_3$ nanowire sensors showed responses of 178% - 338% and 196% - 535% at $300^{\circ}C$, respectively, to 0.05 - 2 ppm $NO_2$. In addition, the underlying mechanism of the enhancement of the sensing properties of ${\beta}-Bi_2O_3$ nanowires by Pd-functionalization is discussed.

유해가스 차단시스템용 MEMS 가스 센서 (MEMS based on nanoparticle gas sensor for air quality system)

  • 이의복;박영욱;황인성;김선중;차정호;이호준;이종흔;주병권
    • 전기전자학회논문지
    • /
    • 제13권4호
    • /
    • pp.37-42
    • /
    • 2009
  • 본 연구에서는 졸겔법으로 ZnO, 수열합성법으로 $SnO_2$ 나노분말을 제조하고 이들 나노분말에 Pd, Ru 등의 촉매를 첨가하였다. MEMS 기술로 제작된 히터 및 전극 구조 위에 나노 감지 분말을 도포하여 CO and $NO_2$ 가스 센서를 제작하였다. 0.1 wt% Pd 도핑된 $SnO_2$ 가스센서와 Ru 도핑된 ZnO 가스 센서는 각각 CO 30 ppm, $NO_2$ 1 ppm의 낮은 농도에서도 높은 감지 특성을 보였다.

  • PDF

표면 마이크로 가공기술을 이용한 비냉각 초전형 적외선 검출소자 제작 (Fabrication of Uncooled Pyroelectric Infrared Detector using Surface M Micromachining Technology)

  • 장철영;고성용;이석헌;김동진;김진섭;이재신;이정희;한석룡;이용현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(2)
    • /
    • pp.115-118
    • /
    • 2000
  • Uncooled pyroelectric infrared detectors based on BST(B $a_{-x}$S $r_{x}$Ti $O_3$) thin films have been fabricated by RF magnetron sputtering and surface Micromachining technology. The detectors form BST thin film ferroelectric capacitors grown by RF magnetron sputtering on N/O/N(S $i_3$ $N_4$/ $SiO_2$/S $i_3$ $N_4$) membrane. The sputtered BST thin film exhibits highly c-axis oriented crystal structure that no poling treatment for sensing applications is required. This is an essential factor to increase the yield for realization of an infrared image sensor. surface-Micromachining technology is used to lower the thermal mass of the detector by giving maximum sensor efficiency Gold-black is evaporated on top of the sensing elements used the thermal evaporator. fabricated uncooled pyroelectric infrared detectors is highly output voltage at the low temperature(1$^{\circ}C$).).).

  • PDF