Browse > Article
http://dx.doi.org/10.5369/JSST.2019.28.4.225

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties  

Kumar Naik, Gautam (Division of Advanced Materials Engineering and Research Centre for Advanced Materials Development, Chonbuk National University)
Yu, Yeon Tae (Division of Advanced Materials Engineering and Research Centre for Advanced Materials Development, Chonbuk National University)
Publication Information
Journal of Sensor Science and Technology / v.28, no.4, 2019 , pp. 225-230 More about this Journal
Abstract
$Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.
Keywords
$Au@TiO_2$ core-shell NPs; $NO_2$; gas sensing response; rGO; nanocomposite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Zanolli, R. Leghrib, A. Felten, J. J. Pireaux, E. Llobet, and J. C. Charlier, "Gas sensing with Au-decorated carbon nanotubes," ACS Nano, Vol. 6, No. 5, pp. 4592-4599, 2011.
2 S. Liu, B. Yu, H. Zhang, T. Fei, and T. Zhang, "Enhancing $NO_3$ gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids", Sens. Actuators B, Vol. 202, No. 1, pp. 272-278, 2014.   DOI
3 X. F. Wu, H. Y. Song J. M. Yoon, Y. T. Yu and Y. F. Chen, "Synthesis of Core-Shell Au@$TiO_2$ Nanoparticles with Truncated Wedge-Shaped Morphology and Their Photocatalytic Properties", Langmuir, Vol. 25, No.11, pp. 6438-6447, 2009.   DOI
4 R. K. Singh, R. Kumar, and D. P. Singh, "Graphene oxide: strategies for synthesis, reduction and frontier applications", RSC Adv., Vol. 6, No. 1, pp. 64993-65011, 2016.   DOI
5 J. A. Rodriguez, T. Jirsak, G. Liu, J. Hrbek, J. Dvorak, and A. Maiti, "Chemistry of $NO_3$ on Oxide Surfaces: Formation of $NO_3$ on $TiO_2$(110) and $NO_2{\leftrightarrow}O$ Vacancy Interactions", J. Am. Chem. Soc., Vol.123, No. 39, pp. 9597-9605, 2001.   DOI
6 S. Zhuiykov, "Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Audoped CoOOH films", Sens. Actuators B, Vol. 129, No.1, pp. 431-441, 2008.   DOI
7 N. L. Hung, H. Kim, S. K. Hong, and D. Kim, "Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots", Sens. Actuators B, Vol. 151, No. 1, pp. 127-132, 2010.   DOI
8 Y. J. Chiang and F. M. Pan, "PdO nanoflake thin films for co gas sensing at low temperatures", J. Phys. Chem. C, Vol. 117, No. 30, pp. 15593-15601, 2013.   DOI
9 G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, and G. Carturan, "Resistive CO gas sensors based on $In_2O_3$ and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications", Sens. Actuators B, Vol. 132, No. 1, pp. 224-233, 2008.   DOI
10 J. Tan, W. Wlodarski, and K. Z. Kourosh, "Nitrogen dioxide gas sensors based on titanium dioxide thin films deposited on langasite," Thin Solid Films, Vol. 515, No. 24, pp. 8738-8743, 2007.   DOI
11 J. T. Mecue and J. Y. Ying, "$SnO_2-InO_2$ nanocomposites as semiconductor gas sensors for CO and NOx detection", Chem. Mater., Vol. 19, No. 5, pp. 1009-1015, 2007.   DOI
12 A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante, and N. Yamazoe, "Cr-doped $TiO_2$ gas sensor for exhaust $NO_3$ monitoring", Sens. Actuators B, Vol. 93, No. 1-3, pp. 509-518, 2003.   DOI
13 T. Akamatsu, T. Itoh, N. Izu, and W. Shin, "NO and $NO_3$ Sensing Properties of $WO_3$ and $Co_3O_4$ Based Gas Sensors", Sensors, Vol. 13, No. 9, pp. 12467-12481, 2013.   DOI
14 L. Wang, J. Gao, B. Wu, Kan Kan, S. Xu, Y. Xie, Li Li, and K. Shi, "Designed synthesis of $In_2O_3$ beads@$TiO_2-In_2O_3$ composite nanofibers for high performance $NO_3$ sensor at room temperature", ACS Appl. Mater. Interfaces, Vol. 49, No. 7, pp. 27152-27159, 2015.
15 M. Amin, N. A. Shah, A. S. Bhattib, and M. A. Malik, "Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts", CrystEngComm., Vol. 16, No. 27, pp. 6080-6088, 2014.   DOI
16 C. W. Zou, J. Wang, and W. Xie, "Synthesis and enhanced $NO_3$ gas sensing properties of ZnO nanorods/$TiO_2$ nanoparticles heterojunction composites", J. Colloid Interface Sci., Vol. 478, No. 1, pp 22-28, 2016.   DOI
17 X. Li, Y. Zhao, X. Wang, J. Wang, A. M. Gaskov, and S. A. Akbar, "Reduced graphene oxide (rGO) decorated $TiO_2$ microspheres for selective room-temperature gas sensors", Sens. Actuators B, Vol. 230, No. 1, pp 330-336, 2016.   DOI
18 A. Forleo, L. Francioso, M. Epifani, S. Capone, A. Taurino, P. Siciliano, "NO-gas-sensing properties of mixed InO SnO thin films," Thin Solid Films, Vol. 490, No. 1, pp. 68-73, 2005.   DOI
19 J. S. Park, Y. S. Kim, P. Rai, and Y. T. Yu, "Effect of crystallinity of $TiO_2$ in Au@$TiO_2$ core-shell nanoparticles on CO sensing properties", Sens. Lett., Vol. 12, No. 8, pp. 1213-1217, 2014.   DOI
20 S. Roy Morrison, "Mechanism of semiconductor gas sensor operation", Sens. Actuators, Vol. 11, No. 3, pp. 283-287, 1987.   DOI
21 P. Rai, R. Khan, S. Raj, S. M. Majhi, K. K. Park, Y.-T. Yu, I.-H. Lee, and P. K. Sekhar, "Au@$Cu_2O$ core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance", Nanoscale, Vol. 6, No. 1, pp. 581-588, 2014.   DOI