Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.3.175

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network  

Kim, Yoojong (School of Electronics Engineering, Busan National Unversity)
Bak, So-Young (School of Electronics Engineering, Busan National Unversity)
Lee, Jeongseok (School of Electronics Engineering, Busan National Unversity)
Lee, Se-Hyeong (School of Electronics Engineering, Busan National Unversity)
Woo, Kyoungwan (School of Electronics Engineering, Busan National Unversity)
Lee, Sanghyun (Department of Smart Interdisciplinary Engineering, Pusan National University)
Yi, Moonsuk (School of Electronics Engineering, Busan National Unversity)
Publication Information
Journal of Sensor Science and Technology / v.30, no.3, 2021 , pp. 175-180 More about this Journal
Abstract
In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.
Keywords
Gas sensors; Oxide semiconductors; $SnO_2$; Nanowire; Vapor-Phase-Growth; High sensitivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Batzill, "Surface Science Studies of Gas Sensing Materials: SnO2", Sensors, Vol. 6, No. 10, pp. 1345-1366, 2006.   DOI
2 H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview", Sens. Actuators B Chem, Vol. 192, No. 1, pp. 607-627, 2014.   DOI
3 M. Tonezzer and N. V. Hieu, "Size-dependent response of single-nanowire gas sensors", Sens. Actuators B Chem, Vol. 163, No. 1, pp.146-152, 2012.   DOI
4 S. Li, X. Zhang, B. Yan, and T. Yu, "Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method", Nanotechnology, Vol. 20, No. 49, pp. 495604, 2009.   DOI
5 Y. Takeshi, N. Kazuki, T. Hidekazu, and K. Tomoji, "Mechanism of critical catalyst size effect on MgO nanowire growth by pulsed laser deposition", J. Appl. Phys, Vol. 104, No.1, pp. 016101-016103, 2008.   DOI
6 M. Epifani, J. D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, and J. R. Morante, "The Role of Surface Oxygen Vacancies in the NO2 sensing properties of SnO2 Nanocrystals", J. Phys. Chem. C, Vol. 112, No. 49, pp. 19540-19546, 2008.   DOI
7 M. Tonezzer, "Selective gas sensor based on one single SnO2 nanowire", Sens. Actuators B Chem, Vol. 288, No. 1, pp. 53-59, 2019.   DOI
8 F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Arbiol, A. Romano-Rodriguez, and J. R. Morante, "High response and stability in CO and humidity measures using a single SnO2 nanowire", Sens. Actuators B Chem, Vol. 121, No. 1, pp. 3-17, 2007.   DOI
9 T. Nagata, O. Bierwagen, M. E. White, M. -Y. Tsai, and J. S. Speck, "Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films", J. Appl. Phys, Vol. 107, No. 3, pp. 033707(1)-033707(7), 2010.   DOI
10 F. Schipani, D. R. Miller, M. A. Ponce, C. M. Aldao, S. A. Akbar, P. A. Morris, and J. C. Xu, "Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study", Sens. Actuators B Chem, Vol. 241, No. 1, pp. 99-108, 2017.   DOI
11 A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng B, Vol. 229, No. 1, pp. 206-217, 2018.   DOI
12 J. P. Cheng, J. Wang, Q. Q. Li, H. G. Liu, and Y. Li, "Review of recent developments in tin dioxide composites for gas sensing application", J. Ind. Eng. Chem, Vol. 44, No. 1, pp. 1-22, 2016.   DOI
13 Y. O. Khaniabadi, G. Goudarzi, S. M. Daryanoosh, A. Borgini, A. Tittarelli, and A. D. Marco, "Exposure to PM10, NO2, and O3 impacts on human health", Environ. Sci. Pollut. Res, Vol. 24, No. 3, pp. 2781-2789, 2017.   DOI
14 S. Maeng, S. W. Kim, D. H. Lee, S. E. Moon, K. C. Kim, and A. Maiti, "SnO2 Nanoslab as NO2 sensor: Identification of the NO2 Sensing Mechanism on a SnO2 surface", Appl. Mater. Interfaces, Vol. 6, No. 1, pp. 357-363, 2014.   DOI
15 R. Kumar, O. AI-Dossary, G. Kumar and, A.Umar, "Zinc Oxide Nanostructures for NO2 Gas-Sensor Applications: A Review", Nanomicor Lett, Vol. 7, No. 2, pp. 97-120, 2015.
16 E. Leblanc, L. Perier-Camby, G. Thomas, M. Primet, and P. Gelin, "NOx adsorption onto dehydroxylated or hydroxylated tin dioxide surface. Application to SnO2-based sensors", Sens. Actuators B Chem, Vol. 62, No.1, pp. 67-72, 2000.   DOI
17 D. R. Miller, S. A. Akbar, and P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sens. Actuators B Chem, Vol. 204, No. 1, pp. 250-272, 2014.   DOI
18 J. -M. Ducere, A. Hemeryck, A. Esteve, M. D. Rouhani, G. Landa, P. Menini, C. Tropis, A. Maisonnat, P. Fau, and B. Chaudret, "A Computational Chemist Approach to Gas Sensors: Modeling the Response of SnO2 to CO, O2, and H2O Gases", J. Comput. Chem, Vol. 33, No. 3, pp. 247-258, 2011.   DOI