Browse > Article
http://dx.doi.org/10.5695/JKISE.2015.48.6.303

NO2 Sensing Properties of β-Bi2O3 Nanowires Sensor Coated with Pd Nanoparticles  

Park, Sunghoon (Department of Materials Science & Engineering, Inha University)
Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
Publication Information
Journal of the Korean institute of surface engineering / v.48, no.6, 2015 , pp. 303-308 More about this Journal
Abstract
Pd-functionalized ${\beta}-Bi_2O_3$ nanowires are synthesized by thermal evaporation of Bi powder using VLS mechanism followed by Pd coating and annealing. In this study, sensing properties of Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor to selected concentrations of $NO_2$ gas were examined. Scanning electron microscopy showed that the nanowires with diameters in a range of 100 - 200 nm and lengths of up to a few tens of micrometers. Transmission electron microscopy and X-ray diffraction confirmed that the products corresponded to the nanowires of ${\beta}-Bi_2O_3$ crystals and Pd nanoparticles. Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor showed an enhanced sensing performance to $NO_2$ gas compared to as-synthesized ${\beta}-Bi_2O_3$ nanowires sensor. As synthesized and Pd-functionalized ${\beta}-Bi_2O_3$ nanowire sensors showed responses of 178% - 338% and 196% - 535% at $300^{\circ}C$, respectively, to 0.05 - 2 ppm $NO_2$. In addition, the underlying mechanism of the enhancement of the sensing properties of ${\beta}-Bi_2O_3$ nanowires by Pd-functionalization is discussed.
Keywords
${\beta}-Bi_2O_3$; nanowires; Pd; $NO_2$; gas sensor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao, Sens. Actuators B 199 (2014) 339.   DOI
2 S. K. Kim, K. D. Song, T. J. Kempa, R. W. Day, C.M. Lieber, H. G. Park, ACS Nano 8 (2014) 3707.   DOI
3 F. Qian, H. Wang, Y. Ling, G. Wang, M.P. Thelen, Y. Li, Nano Lett. 14 (2014) 3688.   DOI
4 D. Meng, T. Yamazaki, T. Kikuta, Sens. Actuators B 190 (2014) 838.   DOI
5 N. D. Chinh, N. V. Toan, V. V. Quang, N. V. Duy, N.D. Hoa, N.V. Hieu, Sens. Actuators B 201 (2014) 7.   DOI
6 E. N. Dattoli, A. V. Davydov, K. D. Benkstein, Nanoscale 4 (2012) 1760.   DOI
7 L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 467 (2010) 305.   DOI
8 M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H.-S. P. Wong, S. Mitra, Nature 501 (2013) 526.   DOI
9 T. Kato, R. Hatakeyama, Nature Nanotechnol. 7 (2012) 651.   DOI
10 S. V. Aert, K. J. Batenburg, M. D. Rossell, R. Erni, G. V. Tendeloo, Nature, 470 (2011) 374.   DOI
11 J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Nature Nanotechnol. 6 (2011) 568.   DOI
12 G. Y. Chai, O. Lupan, E. V. Rusu, G. I. Stratan, V. V. Ursaki, V. Sontea, H. Khallai, L. Chow, Sens. Actuators A 176 (2012) 64.   DOI
13 N. Singh, R. K. Gupta, P. S. Lee, ACS Appl. Mater. Interfaces 3 (2011) 2246.   DOI
14 M. W. G. Hoffmann, J. D. Prades, L. Mayrhofer, F. H. Ramires, T. T. Jarvi, M. Moseler, A. Waag, H. Shen, Adv. Func. Mater. 24 (2014) 595.   DOI
15 I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim, J. H. Lee, ACS Appl. Mater. Interfaces 3 (2011) 3140.   DOI
16 S. K. Blower, C. Greaves, Acta Cryst. C44 (1988) 587.
17 L. Li, Y. W. Yang, G. H. Li, L. D. Zhang, Small 2 (2006) 548.   DOI
18 X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, ACS Nano 6 (2012) 5531.   DOI
19 L. Liao, H. X. Mai, Q. Yuan, H. B. Lu, J. C. Li, C. Liu, C. H. Yan, Z. X. Shen, T. Yu, J. Phys. Chem. C 112 (2008) 9061.   DOI
20 M. Muruganandham, R. Amutha, G. J. Lee, S. H. Hsieh, J. J. Wu, M. Sillanpaa, J. Phys. Chem. C 116 (2012) 12906.   DOI
21 Q. Wan, T. H. Wang, Chem. Commun. 1 (2005) 3841.
22 A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5 (2005) 667.   DOI
23 S. Park, S An, H. Ko, C. Jin, C. Lee, Bull. Korean Chem. Soc. 33 (2012) 3368.   DOI
24 L. Wu, J. Xia, J. Wu, Q. Li, Ionics 21 (2015) 3239.   DOI
25 S. Park, S. An, H. Ko, C. Lee, J. Nanosci. Nanotechnol. 15 (2015) 1605.   DOI
26 C. Bedoya, G. G. Condorelli, G. Anatasi, A. Baeri, F. Scerra, I.L. Fragala, J.G. Lisoni, D. Wouters, Chem. Mater. 16 (2004) 3176.   DOI
27 S. Park, S. An, H. Ko, C. Lee, J. Nanosci. Nanotechnol. 14 (2014) 1.   DOI
28 M. Ge, Y. Li, L. Liu, Z. Zhou, W. Chen, J. Phys. Chem. C 115 (2011) 5220.   DOI
29 L. Armelao, P. Colombo, M. Fabrizio, J. Sol-Gel Sci. Technol. 13 (1998) 213.   DOI
30 G. Shen, P. Chen, K. Ryu, C. Zhou, J. Mater. Chem. 19 (2009) 828.   DOI
31 X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnol. 20 (2009) 495501.   DOI
32 R. K. Joshi, Q. Ju, F. Alvi, N. Joshi, A. Kumar, J. Phys. Chem. C 113 (2009) 16199.   DOI