DOI QR코드

DOI QR Code

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam (Division of Advanced Materials Engineering and Research Centre for Advanced Materials Development, Chonbuk National University) ;
  • Yu, Yeon Tae (Division of Advanced Materials Engineering and Research Centre for Advanced Materials Development, Chonbuk National University)
  • Received : 2019.07.19
  • Accepted : 2019.07.31
  • Published : 2019.07.31

Abstract

$Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

Keywords

HSSHBT_2019_v28n4_225_f0001.png 이미지

Fig. 1. Schematic diagram of gas sensing measurement setup

HSSHBT_2019_v28n4_225_f0002.png 이미지

Fig. 2. TEM image of Au@TiO2/rGO NC.

HSSHBT_2019_v28n4_225_f0003.png 이미지

Fig. 3. XRD patterns for rGO and Au@TiO2/rGO NC.

HSSHBT_2019_v28n4_225_f0004.png 이미지

Fig. 4. Resistance changes to various NO2 gas concentrations for bare rGO and Au@TiO2 core-shell NPs at 400℃.

HSSHBT_2019_v28n4_225_f0005.png 이미지

Fig. 5. Resistance changes to various NO2 gas contents for Au@TiO2/rGO NC, at different operating temperatures.

HSSHBT_2019_v28n4_225_f0006.png 이미지

Fig. 6. Plot of response vs. operating temperature at different NO2 concentration for Au@TiO2/rGO NC.

HSSHBT_2019_v28n4_225_f0007.png 이미지

Fig. 7. Plot of response vs. NO2 concentration at different operating temperature for Au@TiO2/rGO NC.

References

  1. S. Zhuiykov, "Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Audoped CoOOH films", Sens. Actuators B, Vol. 129, No.1, pp. 431-441, 2008. https://doi.org/10.1016/j.snb.2007.08.046
  2. N. L. Hung, H. Kim, S. K. Hong, and D. Kim, "Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots", Sens. Actuators B, Vol. 151, No. 1, pp. 127-132, 2010. https://doi.org/10.1016/j.snb.2010.09.036
  3. Y. J. Chiang and F. M. Pan, "PdO nanoflake thin films for co gas sensing at low temperatures", J. Phys. Chem. C, Vol. 117, No. 30, pp. 15593-15601, 2013. https://doi.org/10.1021/jp402074w
  4. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, and G. Carturan, "Resistive CO gas sensors based on $In_2O_3$ and InSnOx nanopowders synthesized via starch-aided sol-gel process for automotive applications", Sens. Actuators B, Vol. 132, No. 1, pp. 224-233, 2008. https://doi.org/10.1016/j.snb.2008.01.030
  5. J. Tan, W. Wlodarski, and K. Z. Kourosh, "Nitrogen dioxide gas sensors based on titanium dioxide thin films deposited on langasite," Thin Solid Films, Vol. 515, No. 24, pp. 8738-8743, 2007. https://doi.org/10.1016/j.tsf.2007.04.008
  6. A. Forleo, L. Francioso, M. Epifani, S. Capone, A. Taurino, P. Siciliano, "NO-gas-sensing properties of mixed InO SnO thin films," Thin Solid Films, Vol. 490, No. 1, pp. 68-73, 2005. https://doi.org/10.1016/j.tsf.2005.04.022
  7. J. T. Mecue and J. Y. Ying, "$SnO_2-InO_2$ nanocomposites as semiconductor gas sensors for CO and NOx detection", Chem. Mater., Vol. 19, No. 5, pp. 1009-1015, 2007. https://doi.org/10.1021/cm0617283
  8. A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante, and N. Yamazoe, "Cr-doped $TiO_2$ gas sensor for exhaust $NO_3$ monitoring", Sens. Actuators B, Vol. 93, No. 1-3, pp. 509-518, 2003. https://doi.org/10.1016/S0925-4005(03)00183-7
  9. T. Akamatsu, T. Itoh, N. Izu, and W. Shin, "NO and $NO_3$ Sensing Properties of $WO_3$ and $Co_3O_4$ Based Gas Sensors", Sensors, Vol. 13, No. 9, pp. 12467-12481, 2013. https://doi.org/10.3390/s130912467
  10. M. Amin, N. A. Shah, A. S. Bhattib, and M. A. Malik, "Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts", CrystEngComm., Vol. 16, No. 27, pp. 6080-6088, 2014. https://doi.org/10.1039/C4CE00153B
  11. C. W. Zou, J. Wang, and W. Xie, "Synthesis and enhanced $NO_3$ gas sensing properties of ZnO nanorods/$TiO_2$ nanoparticles heterojunction composites", J. Colloid Interface Sci., Vol. 478, No. 1, pp 22-28, 2016. https://doi.org/10.1016/j.jcis.2016.05.061
  12. X. Li, Y. Zhao, X. Wang, J. Wang, A. M. Gaskov, and S. A. Akbar, "Reduced graphene oxide (rGO) decorated $TiO_2$ microspheres for selective room-temperature gas sensors", Sens. Actuators B, Vol. 230, No. 1, pp 330-336, 2016. https://doi.org/10.1016/j.snb.2016.02.069
  13. L. Wang, J. Gao, B. Wu, Kan Kan, S. Xu, Y. Xie, Li Li, and K. Shi, "Designed synthesis of $In_2O_3$ beads@$TiO_2-In_2O_3$ composite nanofibers for high performance $NO_3$ sensor at room temperature", ACS Appl. Mater. Interfaces, Vol. 49, No. 7, pp. 27152-27159, 2015.
  14. J. S. Park, Y. S. Kim, P. Rai, and Y. T. Yu, "Effect of crystallinity of $TiO_2$ in Au@$TiO_2$ core-shell nanoparticles on CO sensing properties", Sens. Lett., Vol. 12, No. 8, pp. 1213-1217, 2014. https://doi.org/10.1166/sl.2014.3293
  15. S. Roy Morrison, "Mechanism of semiconductor gas sensor operation", Sens. Actuators, Vol. 11, No. 3, pp. 283-287, 1987. https://doi.org/10.1016/0250-6874(87)80007-0
  16. P. Rai, R. Khan, S. Raj, S. M. Majhi, K. K. Park, Y.-T. Yu, I.-H. Lee, and P. K. Sekhar, "Au@$Cu_2O$ core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance", Nanoscale, Vol. 6, No. 1, pp. 581-588, 2014. https://doi.org/10.1039/C3NR04118B
  17. Z. Zanolli, R. Leghrib, A. Felten, J. J. Pireaux, E. Llobet, and J. C. Charlier, "Gas sensing with Au-decorated carbon nanotubes," ACS Nano, Vol. 6, No. 5, pp. 4592-4599, 2011.
  18. S. Liu, B. Yu, H. Zhang, T. Fei, and T. Zhang, "Enhancing $NO_3$ gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids", Sens. Actuators B, Vol. 202, No. 1, pp. 272-278, 2014. https://doi.org/10.1016/j.snb.2014.05.086
  19. X. F. Wu, H. Y. Song J. M. Yoon, Y. T. Yu and Y. F. Chen, "Synthesis of Core-Shell Au@$TiO_2$ Nanoparticles with Truncated Wedge-Shaped Morphology and Their Photocatalytic Properties", Langmuir, Vol. 25, No.11, pp. 6438-6447, 2009. https://doi.org/10.1021/la900035a
  20. R. K. Singh, R. Kumar, and D. P. Singh, "Graphene oxide: strategies for synthesis, reduction and frontier applications", RSC Adv., Vol. 6, No. 1, pp. 64993-65011, 2016. https://doi.org/10.1039/C6RA07626B
  21. J. A. Rodriguez, T. Jirsak, G. Liu, J. Hrbek, J. Dvorak, and A. Maiti, "Chemistry of $NO_3$ on Oxide Surfaces: Formation of $NO_3$ on $TiO_2$(110) and $NO_2{\leftrightarrow}O$ Vacancy Interactions", J. Am. Chem. Soc., Vol.123, No. 39, pp. 9597-9605, 2001. https://doi.org/10.1021/ja011131i