• Title/Summary/Keyword: $NO_2$gas

Search Result 2,411, Processing Time 0.037 seconds

Basic Studies for the Development of the $NO_2$ Gas Sensor Using Functional Organic Ultrathin Film (기능성 유기 초박막을 이용한 $NO_2$ 가스센서 개발을 위한 기초 연구)

  • Sohn, B.C.;Rim, B.O.;Kim, Y.I.;Sohn, T.W.;Shin, D.M.;Ju, J.B.;Chung, G.Y.;Kim, Y.K.;Kang, W.H.;Lee, B.H.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.125-131
    • /
    • 1995
  • Ultra thin films of Tetra-3-hexadecylsulphamoylcopperphthalocyanine(HDSM-CuPc) were formed on various substrates by Langmuir-Blodgett method, where HDSM-CuPc was synthesized by attaching long-chain alkylamine(hexa-decylamine) to CuPc. The reaction product was identified with FT-IR, UV-visible absorption spectroscopies, elemental analysis and thin layer chromatography. The formation of Ultrathin Langmuir-Blodgett(LB) films of HDSM-CuPc was confirmed by FT-IR and UV-visible spectroscopies. A quartz piezoelectric crystal coated with LB films of HDSM-CuPc was examined as a gas sensor for $N0_2$ gas. HDSM-CuPc LB films were transferred to a quartz crystal microbalance(QCM) in the form of Z-type multilayers. Response characteristics of film-coated QCM to $NO_2$ gas concentrations over a range of $100{\sim}600ppm$ have been tested with a thickness of $5{\sim}20$ layers of HDSM-CuPc. Changes in frequency by adsorption of $NO_2$ were increased With the number of LB layers and $NO_2$ concentration, but the response time was slow.

Optimization of the Pt Nanoparticle Size and Calcination Temperature for Enhanced Sensing Performance of Pt-Decorated In2O3 Nanorods

  • Choi, Seung-Bok;Lee, Jae Kyung;Lee, Woo Seok;Ko, Tae Gyung;Lee, Chongmu
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1444-1451
    • /
    • 2018
  • The surface-to-volume ratio of one-dimensional (1D) semiconductor metal-oxide sensors is an important factor for achieving good gas sensing properties because it offers a wide response area. To exploit this effect, in this study, we determined the optimal calcination temperature to maximize the specific surface area and thereby the sensitivity of the sensor. The $In_2O_3$ nanorods were synthesized by using vapor-liquid-solid growth of $In_2O_3$ powders and were decorated with the Pt nanoparticles by using a sol-gel method. Subsequently, the Pt nanoparticle-decorated $In_2O_3$ nanorods were calcined at different temperatures to determine the optimal calcination temperature. The $NO_2$ gas sensing properties of five different samples (pristine uncalcined $In_2O_3$ nanorods, Pt-decorated uncalcined $In_2O_3$ nanorods, and Pt-decorated $In_2O_3$ nanorods calcined at 400, 600, and $800^{\circ}C$) were determined and compared. The Pt-decorated $In_2O_3$ nanorods calcined at $600^{\circ}C$ showed the highest surface-to-volume ratio and the strongest response to $NO_2$ gas. Moreover, these nanorods showed the shortest response/recovery times toward $NO_2$. These enhanced sensing properties are attributed to a combination of increased surface-to-volume ratio (achieved through the optimal calcination) and increased electrical/chemical sensitization (provided by the noble-metal decoration).

Effects of gas formers on metal transfer of the self-shielded flux cored arc welding (Self-shielded flux cored arc welding시 가스 발생제가 용적 이행 현상에 미치는 영향)

  • 정재필;김경중;황선효
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1985
  • Wire meling characteristics were examined with variation of gas formers such as $MgCO_3, CaCO_3 and Li_ 2CO_ 3$ by self-shielded flux cored arc welding. The flux cored wire of overlap type was welded by DCRP. The results obtainedareas follows. 1) Drop type was observed with no gas former, repelled type with MgCO_3$ added and short circuit type with $Li_2CO_3$ added. The variation of transfer mode was related to the blowing force of $CO_2$ gas and the surface tension of the slag. 2) Droplet size increased with adding gas formers due to the effect of $CO_2$ gas cushion. 3) Core spikes were observed more frequently with increasing the amount of gas formers.

  • PDF

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas (배출가스의 질소산화물과 이산화황 동시 저감 기술)

  • Park, Hyun-Woo;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.607-618
    • /
    • 2017
  • Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

Study on Gas Concentration Measurement of O2 and NO Using Calibration-free Wavelength Modulation Spectroscopy in Visible and Mid-Infrared Region (가시광선과 중적외선 영역의 무보정 파장 변조 분광법을 이용한 O2와 NO 가스 농도 측정에 관한 연구)

  • Aran Song;Geunhui Ju;Kanghyun Kim;Jungho Hwang;Daehae Kim;Changyeop Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.70-77
    • /
    • 2023
  • Air environment regulations have been strengthened due to increasing air pollutant emissions, the target of reducing emissions has increased and interest in gas measurement methods is also increasing. The sampling method is mainly used, but due to the spatial and temporal measurement limitations, the laser absorption spectroscopy which is a real-time and in-situ method is in the spotlight. In this study, we studied the wavelength modulation spectroscopy and described the calibration-free algorithm. The developed algorithm was modified to reflect 46 multi-absorption lines and was applied to light absorption signal analysis in visible and mid-infrared regions. In addition, the difference between the modulation parameters of laser was analyzed. As a result of reviewing the performance through O2 and NO gas measurement experiments of various concentration conditions, the linearity was R2O2=0.99999 and R2NO=0.99967.

Effect of $N_2$ back shielding gas on the property change of GTA weldment (질소 이면보호가스 적용성에 관한 연구)

  • 백광기;안병식
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.12-21
    • /
    • 1987
  • To investigate the suitability of nitrogen gas as an internal purging gas, various properties of GTA welded joints of duplex, 316L stainless steel, Cu-Ni alloy pipe using nitrogen purging gas were evaluated with reference to onew purged with argon gas. Mechanical properties evaluated by the tensile, bending test, and hardness value of welded joints with nitrogen gas purging did not show any difference those with argon gas. General and local corrosion rates of each welded joint prepared by nitrogen gas purging also showed no difference with those prepared by argon gas. Based on the present test results it is confirmed that nitrogen is a suitable purging gas for GTA welding of stainless steels and nonferrous piping systems, which can be used at lower cost instead of argon.

  • PDF

NO2 gas sensor using an AlGaN/GaN Heterostructure FET with SnO2 catalyst deposited by ALD technique (원자막증착법(ALD) SnO2 촉매를 적용한 AlGaN/GaN 이종접합 트랜지스터 NO2 가스센서)

  • Yang, Suhyuk;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1117-1121
    • /
    • 2020
  • In this work, it was confirmed that a SnO2 catalyst deposited by an atomic layer deposition(ALD) process can be employed in AlGaN/GaN heterostructure FET to detect NO2 gas. The fabricated HFET sensors on AlGaN/GaN-on-Si platform demonstrated that the devices with or without n-situ SiN have sensitivity of 5.5 % and 38 % at 200 ℃, respectively with response to 100 ppm-NO2.

Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis (수열합성법으로 성장시킨 ZnO 나노 로드기반 TFT 가스 센서 제조 및 특성평가)

  • Jeong, Jun-Kyo;Yun, Ho-Jin;Yang, Seung-Dong;Park, Jeong-Hyun;Kim, Hyo-Jin;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.

First-principles Study of MoS2 Nanostructures with Various Adsorbates

  • Cha, Janghwan;Sung, Dongchul;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.210.2-210.2
    • /
    • 2014
  • Recently, molybdenum disulfide (MoS2) nanostructures have been investigated for applications of lithium-ion batteries, solar cell, and gas sensors. In this regard, we have studied atomic and electronic properties of MoS2 nanostructures with adsorbed atoms and molecules using density functional theory calculations. Our calculations reveal that the several atoms such as H, C, N, and F are chemically bound to several sites on the two-dimensional (2D) MoS2 surface. On the other hand, various contamination molecules such as CO, CO2, NO, NO2, and NH3 do not bind to the surface. Next, adsorption of various molecules on the one-dimensional (1D) armchair MoS2 nanoribbon is investigated. Contrary to the case of 2D MoS2 monolayer surface, some molecules (CO and NO) are bound well to the edge of the MoS2 nanoribbon. We find that the molecular states due to adsorption are located near the Fermi level, which makes the band gap narrower. Therefore, we suggest that monolayer MoS2 nanoribbons be used as the gas sensors or detectors.

  • PDF

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.