Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.4.229

Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis  

Jeong, Jun-Kyo (Department of Electronic Radio Information Communication Engineering, Chungnam National University)
Yun, Ho-Jin (Department of Electronic Radio Information Communication Engineering, Chungnam National University)
Yang, Seung-Dong (Department of Electronic Radio Information Communication Engineering, Chungnam National University)
Park, Jeong-Hyun (Department of Electronic Radio Information Communication Engineering, Chungnam National University)
Kim, Hyo-Jin (Department of Material Science Engineering, Chungnam National University)
Lee, Ga-Won (Department of Electronic Radio Information Communication Engineering, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.4, 2017 , pp. 229-234 More about this Journal
Abstract
In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.
Keywords
Oxide semiconductor; ZnO; Nanorod; Hydrothermal synthesis; NO; Gas sensor; Sensitivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Yamazoe, Sens. Actuators, B: Chem., 108, 2 (2005). [DOI: https://doi.org/10.1016/j.snb.2004.12.075]   DOI
2 A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, IEEE Sens. J., 7, 919 (2007). [DOI: https://doi.org/10.1109/JSEN.2007.895963]
3 C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D.P.R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 7, 1003 (2007). [DOI: https://doi.org/10.1021/nl070111x]   DOI
4 L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, Appl. Phys. Lett., 94, 203106 (2009). [DOI: https://doi.org/10.1063/1.3141447]   DOI
5 J. J. Hassana, M. A. Mahdia, C. W. China, H. Abu-Hassana, and Z. Hassana, Sens. Actuators, B: Chem., 176, 360 (2013). [DOI: https://doi.org/10.1016/j.snb.2012.09.081]   DOI
6 Y. Wu and P. Yang, Chem. Mater., 12, 605 (2000). [DOI: https://doi.org/10.1021/cm9907514]   DOI
7 M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett., 61, 2051 (1992). [DOI: https://doi.org/10.1063/1.108329]   DOI
8 Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater., 12, 746 (2000). [DOI: https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N]   DOI
9 K. T. Kim, M. J. Kim, and S. M. Cho, Mater. Chem. Phys., 96, 278 (2006). [DOI: https://doi.org/10.1016/j.matchemphys. 2005.07.013]   DOI
10 Y. J. Tak and K. J. Yong, J. Phys. Chem. B, 109, 19263 (2005). [DOI: https://doi.org/10.1021/jp0538767]   DOI
11 M. Y. Cho, M. S. Kim, G. S. Kim, H. Y. Choi, S. M. Jeon, K. G. Yim, D. Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J. Y. Leem, J. Korean Vac. Soc., 19, 236 (2010). [DOI: https://doi.org/10.5757/JKVS.2010.19.3.236]   DOI
12 Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett., 85, 6389 (2004). [DOI: https://doi.org/10.1063/1.1840116]   DOI
13 M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, Sens. Actuators, B: Chem., 138, 168 (2009). [DOI: https://doi.org/10.1016/j.snb.2009.02.008]   DOI
14 T. J. Hsueh, C. L. Hsu, S. J. Chang, and I. C. Chen, Sens. Actuators, B: Chem., 126, 473 (2007). [DOI: https://doi.org/10.1016/j.snb.2007.03.034]   DOI
15 J. J. Park, S. H. Lee, and K. J. Yong, Nanotechnology, 23, 385707 (2012). [DOI: https://doi.org/10.1088/0957-4484/23/38/385707]   DOI
16 S. H. Baek, J. J. Song, and S. W. Lim, Physica B, 399, 101 (2007). [DOI: https://doi.org/10.1016/j.physb.2007.05.030]   DOI
17 J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008). [DOI: https://doi.org/10.1063/1.2990657]   DOI
18 E. B. Lee, Y. W. Park, I. S. Hwang, S. J. Kim, J. G. Cha, H. J. Lee, J. H. Lee, and B. K. Ju, Journal of IKEEE, 13, 37 (2009).
19 J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Appl. Phys. Lett., 93, 093504 (2008). [DOI: https://doi.org/10.1063/1.2977865]   DOI
20 S. Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, W. T. Lim, S. J. Pearton, D. P. Norton, and Y. W. Heo, Appl. Phys. Lett., 96, 102107 (2010). [DOI: https://doi.org/10.1063/1.3357431]   DOI
21 Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys., 88, 498 (2000). [DOI: https://doi.org/10.1063/1.373685]   DOI
22 M. D. McCluskey and S. J. Jokela, J. Appl. Phys., 106, 071101 (2009). [DOI: https://doi.org/10.1063/1.3216464]   DOI
23 J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. David Shieh, P. T. Liu, and Y. P. Huang, IEEE Trans. Electron Dev., 58, 1121 (2011). [DOI: https://doi.org/10.1109/TED.2011.2105879]   DOI
24 F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C.H.J. Liu, J. Taiwan Inst. Chem. Eng., 40, 528 (2009). [DOI: https://doi.org/10.1016/j.jtice.2009.03.008]   DOI