DOI QR코드

DOI QR Code

Optimization of the Pt Nanoparticle Size and Calcination Temperature for Enhanced Sensing Performance of Pt-Decorated In2O3 Nanorods

  • Choi, Seung-Bok (Department of Mechanical Engineering, Inha University) ;
  • Lee, Jae Kyung (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Woo Seok (Department of Materials Science and Engineering, Inha University) ;
  • Ko, Tae Gyung (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Chongmu (Department of Materials Science and Engineering, Inha University)
  • Received : 2018.07.05
  • Accepted : 2018.07.25
  • Published : 2018.11.30

Abstract

The surface-to-volume ratio of one-dimensional (1D) semiconductor metal-oxide sensors is an important factor for achieving good gas sensing properties because it offers a wide response area. To exploit this effect, in this study, we determined the optimal calcination temperature to maximize the specific surface area and thereby the sensitivity of the sensor. The $In_2O_3$ nanorods were synthesized by using vapor-liquid-solid growth of $In_2O_3$ powders and were decorated with the Pt nanoparticles by using a sol-gel method. Subsequently, the Pt nanoparticle-decorated $In_2O_3$ nanorods were calcined at different temperatures to determine the optimal calcination temperature. The $NO_2$ gas sensing properties of five different samples (pristine uncalcined $In_2O_3$ nanorods, Pt-decorated uncalcined $In_2O_3$ nanorods, and Pt-decorated $In_2O_3$ nanorods calcined at 400, 600, and $800^{\circ}C$) were determined and compared. The Pt-decorated $In_2O_3$ nanorods calcined at $600^{\circ}C$ showed the highest surface-to-volume ratio and the strongest response to $NO_2$ gas. Moreover, these nanorods showed the shortest response/recovery times toward $NO_2$. These enhanced sensing properties are attributed to a combination of increased surface-to-volume ratio (achieved through the optimal calcination) and increased electrical/chemical sensitization (provided by the noble-metal decoration).

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. Penza, C. Martucci and G. Gassano, Sens. Actuators B 50, 52 (1998). https://doi.org/10.1016/S0925-4005(98)00156-7
  2. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, Sens. Actuators B 160, 580 (2011). https://doi.org/10.1016/j.snb.2011.08.032
  3. N. D. Hoa and S. A. El-Safry, Chem. Eur. J. 17, 12896 (2011). https://doi.org/10.1002/chem.201101122
  4. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
  5. C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors 10, 2088 (2010). https://doi.org/10.3390/s100302088
  6. M. M. Arafat, B. Dinan, S. A. Akbar and A. S. M. A Hasseb, Sensors 12, 7207 (2012). https://doi.org/10.3390/s120607207
  7. J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo and S. Wang, J. Mater. Chem. 2, 6453 (2010).
  8. J. Seo, K. Park, D. Lee and C. Lee, Mater. Sci. Eng. B49, 247 (1997).
  9. A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett. 5, 667 (2005). https://doi.org/10.1021/nl050082v
  10. N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee and E. Comini, Sens. Actuators B 160, 1346 (2011). https://doi.org/10.1016/j.snb.2011.09.073
  11. L.Wang, J. Deng, Z. Lou and T. Zhang, J. Mater. Chem. A 2, 10022 (2014). https://doi.org/10.1039/c4ta00651h
  12. J. Jun, C. Jin, H. Kim, J. Kang and C. Lee, Appl. Phys. A 96, 813 (2009). https://doi.org/10.1007/s00339-009-5303-2
  13. C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian and H. Zhang, Sens. Actuators B 156, 114 (2011). https://doi.org/10.1016/j.snb.2011.03.080
  14. S-W. Fan, A. K. Srivastava and V. P. Dravid, Appl. Phys. Lett. 95, 142106 (2009). https://doi.org/10.1063/1.3243458
  15. L. D. Zhu, T. S. Zhao, J. B. Xu and Z. X. Liang, J. Power Sources 187, 80 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.089
  16. J. Huang and Q. Wan, Sensors 9, 9903 (2009). https://doi.org/10.3390/s91209903
  17. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu and C. Zhou, Ann. N. Y. Acad. Sci. 1006, 104 (2003). https://doi.org/10.1196/annals.1292.007
  18. N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu and D. Yang, Adv. Mater. 1, 1641 (2007).
  19. N. H. Kim, H. W. Kim, C. Seoul and C. Lee, Mater. Sci. Eng. B111, 131 (2004). https://doi.org/10.1016/j.mseb.2004.04.002
  20. S. K. Lim, S-H. Hwang, D. Chang and S. Kim, Sens. Actuators B 149, 28 (2010). https://doi.org/10.1016/j.snb.2010.06.039
  21. C. Xiangfeng, W. Caihong, J. Dongli and Z. Chenmou, Chem. Phys. Lett. 399, 461 (2004). https://doi.org/10.1016/j.cplett.2004.10.053
  22. P. S. Khiabani, A. Hosseinmardi, E. Marzbanrad, S. Ghashghaie, C. Zamani, M. Keyanpour-Rad and B. Raissi, Sen. Actuators B 162, 102 (2012). https://doi.org/10.1016/j.snb.2011.12.043
  23. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Z. Wang, X. Xu, S. Li and C. Wang, J. Collid Interface Sci. 338, 366 (2009). https://doi.org/10.1016/j.jcis.2009.06.041
  24. G. Neri, A. Bonavita, G. Micali, G. Rizzo, S. Galvagno, M. Niederberger and N. Pinna, Chem. Commum. 48, 6032 (2005).
  25. A. Kaniyoor, R. I. Jafri, T. Arockiadoss and S. Ramaprabhu, Nanoscale 1, 382 (2009). https://doi.org/10.1039/b9nr00015a
  26. C. Jin, S. Park, H. Kim and C. Lee, Bull. Korean Chem. Soc. 33, 1851 (2012). https://doi.org/10.5012/bkcs.2012.33.6.1851
  27. Z. C. Zhang and B. C. Beard, Applied Catalysis A: General 183, 229 (1999).

Cited by

  1. Cerium-doped indium oxide nanosphere arrays with enhanced ethanol-sensing properties vol.21, pp.4, 2018, https://doi.org/10.1007/s11051-019-4516-3