Browse > Article
http://dx.doi.org/10.3938/jkps.73.1444

Optimization of the Pt Nanoparticle Size and Calcination Temperature for Enhanced Sensing Performance of Pt-Decorated In2O3 Nanorods  

Choi, Seung-Bok (Department of Mechanical Engineering, Inha University)
Lee, Jae Kyung (Department of Materials Science and Engineering, Inha University)
Lee, Woo Seok (Department of Materials Science and Engineering, Inha University)
Ko, Tae Gyung (Department of Materials Science and Engineering, Inha University)
Lee, Chongmu (Department of Materials Science and Engineering, Inha University)
Abstract
The surface-to-volume ratio of one-dimensional (1D) semiconductor metal-oxide sensors is an important factor for achieving good gas sensing properties because it offers a wide response area. To exploit this effect, in this study, we determined the optimal calcination temperature to maximize the specific surface area and thereby the sensitivity of the sensor. The $In_2O_3$ nanorods were synthesized by using vapor-liquid-solid growth of $In_2O_3$ powders and were decorated with the Pt nanoparticles by using a sol-gel method. Subsequently, the Pt nanoparticle-decorated $In_2O_3$ nanorods were calcined at different temperatures to determine the optimal calcination temperature. The $NO_2$ gas sensing properties of five different samples (pristine uncalcined $In_2O_3$ nanorods, Pt-decorated uncalcined $In_2O_3$ nanorods, and Pt-decorated $In_2O_3$ nanorods calcined at 400, 600, and $800^{\circ}C$) were determined and compared. The Pt-decorated $In_2O_3$ nanorods calcined at $600^{\circ}C$ showed the highest surface-to-volume ratio and the strongest response to $NO_2$ gas. Moreover, these nanorods showed the shortest response/recovery times toward $NO_2$. These enhanced sensing properties are attributed to a combination of increased surface-to-volume ratio (achieved through the optimal calcination) and increased electrical/chemical sensitization (provided by the noble-metal decoration).
Keywords
Pt decoration; $In_2O_3$; Calcination; Gas sensor; $NO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Penza, C. Martucci and G. Gassano, Sens. Actuators B 50, 52 (1998).   DOI
2 K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, Sens. Actuators B 160, 580 (2011).   DOI
3 N. D. Hoa and S. A. El-Safry, Chem. Eur. J. 17, 12896 (2011).   DOI
4 G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).   DOI
5 C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, Sensors 10, 2088 (2010).   DOI
6 M. M. Arafat, B. Dinan, S. A. Akbar and A. S. M. A Hasseb, Sensors 12, 7207 (2012).   DOI
7 J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo and S. Wang, J. Mater. Chem. 2, 6453 (2010).
8 N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee and E. Comini, Sens. Actuators B 160, 1346 (2011).   DOI
9 J. Seo, K. Park, D. Lee and C. Lee, Mater. Sci. Eng. B49, 247 (1997).
10 A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett. 5, 667 (2005).   DOI
11 L.Wang, J. Deng, Z. Lou and T. Zhang, J. Mater. Chem. A 2, 10022 (2014).   DOI
12 J. Jun, C. Jin, H. Kim, J. Kang and C. Lee, Appl. Phys. A 96, 813 (2009).   DOI
13 C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian and H. Zhang, Sens. Actuators B 156, 114 (2011).   DOI
14 S-W. Fan, A. K. Srivastava and V. P. Dravid, Appl. Phys. Lett. 95, 142106 (2009).   DOI
15 L. D. Zhu, T. S. Zhao, J. B. Xu and Z. X. Liang, J. Power Sources 187, 80 (2009).   DOI
16 J. Huang and Q. Wan, Sensors 9, 9903 (2009).   DOI
17 C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu and C. Zhou, Ann. N. Y. Acad. Sci. 1006, 104 (2003).   DOI
18 N. Du, H. Zhang, B. Chen, X. Ma, Z. Liu, J. Wu and D. Yang, Adv. Mater. 1, 1641 (2007).
19 N. H. Kim, H. W. Kim, C. Seoul and C. Lee, Mater. Sci. Eng. B111, 131 (2004).   DOI
20 S. K. Lim, S-H. Hwang, D. Chang and S. Kim, Sens. Actuators B 149, 28 (2010).   DOI
21 C. Xiangfeng, W. Caihong, J. Dongli and Z. Chenmou, Chem. Phys. Lett. 399, 461 (2004).   DOI
22 A. Kaniyoor, R. I. Jafri, T. Arockiadoss and S. Ramaprabhu, Nanoscale 1, 382 (2009).   DOI
23 P. S. Khiabani, A. Hosseinmardi, E. Marzbanrad, S. Ghashghaie, C. Zamani, M. Keyanpour-Rad and B. Raissi, Sen. Actuators B 162, 102 (2012).   DOI
24 W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Z. Wang, X. Xu, S. Li and C. Wang, J. Collid Interface Sci. 338, 366 (2009).   DOI
25 G. Neri, A. Bonavita, G. Micali, G. Rizzo, S. Galvagno, M. Niederberger and N. Pinna, Chem. Commum. 48, 6032 (2005).
26 C. Jin, S. Park, H. Kim and C. Lee, Bull. Korean Chem. Soc. 33, 1851 (2012).   DOI
27 Z. C. Zhang and B. C. Beard, Applied Catalysis A: General 183, 229 (1999).