• Title/Summary/Keyword: $L_k$-operator

Search Result 328, Processing Time 0.025 seconds

INTEGRAL OPERATORS FOR OPERATOR VALUED MEASURES

  • Park, Jae-Myung
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.331-336
    • /
    • 1994
  • Let $P_{0}$ be a $\delta$-ring (a ring closed with respect to the forming of countable intersections) of subsets of a nonempty set $\Omega$. Let X and Y be Banach spaces and L(X, Y) the Banach space of all bounded linear operators from X to Y. A set function m : $P_{0}$ longrightarrow L(X, Y) is called an operator valued measure countably additive in the strong operator topology if for every x $\epsilon$ X the set function E longrightarrow m(E)x is a countably additive vector measure. From now on, m will denote an operator valued measure countably additive in the strong operator topology.(omitted)

  • PDF

A COMPARISON THEOREM OF THE EIGENVALUE GAP FOR ONE-DIMENSIONAL BARRIER POTENTIALS

  • Hyun, Jung-Soon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.353-360
    • /
    • 2000
  • The fundamental gap between the lowest two Dirich-let eigenvalues for a Schr dinger operator HR={{{{ { { d}^{2 } } over { { dx}^{2 } } }}}}+V(x) on L({{{{ LEFT | -R,R RIGHT | }}}}) is compared with the gap for a same operator Hs with a different domain {{{{ LEFT [ -S,S RIGHT ] }}}} and the difference is exponentially small when the potential has a large barrier.

  • PDF

COMPACT INTERPOLATION ON AX = Y IN ALG𝓛

  • Kang, Joo Ho
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.441-446
    • /
    • 2014
  • In this paper the following is proved: Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$ and X and Y be operators acting on $\mathcal{H}$. Then there exists a compact operator A in $Alg\mathcal{L}$ such that AX = Y if and only if ${\sup}\{\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}\;:\;f{\in}\mathcal{H},\;E{\in}\mathcal{L}\}$ = K < ${\infty}$ and Y is compact. Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel}=K$.

The design of Remote Control system based on web using the embedded-linux and SMS information transmission system (내장형 리눅스를 이용한 웹 기반 원격 제어 및 SMS 정보 전달 시스템 설계)

  • Jeong, Il-Kwon;Kim, Hee-Sun;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.454-456
    • /
    • 2002
  • Embedded system is used a lot in electric home appliances and home network equipment. However, this system is designed to operate by the system operator directly at home and operator could find out them only when he pays attention to the system in case event happens. In this paper, to improve above things, it designed to remote-control system anywhere in which internet access is possible as well as at home, and also it designed SMS(short message service) information transmission system to inform the errors to the operator when they happen. To design the system, development board(be included the Strong Arm), CDMA module, and electric door lock are used as hardware, and web browser, CGI(common gateway interface) programming, and C-language are used for implementation of software in embedded-linux platform.

  • PDF

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.

Robot System Design Capable of Motion Recognition and Tracking the Operator's Motion (사용자의 동작인식 및 모사를 구현하는 로봇시스템 설계)

  • Choi, Yonguk;Yoon, Sanghyun;Kim, Junsik;Ahn, YoungSeok;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2015
  • Three dimensional (3D) position determination and motion recognition using a 3D depth sensor camera are applied to a developed penguin-shaped robot, and its validity and closeness are investigated. The robot is equipped with an Asus Xtion Pro Live as a 3D depth camera, and a sound module. Using the skeleton information from the motion recognition data extracted from the camera, the robot is controlled so as to follow the typical three mode-reactions formed by the operator's gestures. In this study, the extraction of skeleton joint information using the 3D depth camera is introduced, and the tracking performance of the operator's motions is explained.

SUMMING AND DOMINATED OPERATORS ON A CARTESIAN PRODUCT OF c0 (𝓧) SPACES

  • Badea, Gabriela;Popa, Dumitru
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.967-986
    • /
    • 2017
  • We give the necessary condition for an operator defined on a cartesian product of $c_0(\mathcal{X})$ spaces to be summing or dominated and we show that for the multiplication operators this condition is also sufficient. By using these results, we show that ${\Pi}_s(c_0,{\ldots},c_0;c_0)$ contains a copy of $l_s(l^m_2{\mid}m{\in}\mathbb{N})$ for s > 2 or a copy of $1_s(l^m_1{\mid}{\in}\mathbb{N})$, for any $l{\leq}S$ < ${\infty}$. Also ${\Delta}_{s_1,{\ldots},s_n}(c_0,{\ldots},c_0;c_0)$ contains a copy of $l_{{\upsilon}_n(s_1,{\ldots},s_n)}$ if ${\upsilon}_n(s_1,{\ldots},s_n){\leq}2$ or a copy of $l_{{\upsilon}_n(s_1,{\ldots},s_n)}(l^m_2{\mid}m{\in}\mathbb{N})$ if 2 < ${\upsilon}_n(s_1,{\ldots},s_n)$, where ${\frac{1}{{\upsilon}_n(s_1,{\ldots},s_n})}={\frac{1}{s_1}}+{\cdots}+{\frac{1}{s_n}}$. We find also the necessary and sufficient conditions for bilinear operators induced by some method of summability to be 1-summing or 2-dominated.