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COMPACT INTERPOLATION ON AX = Y IN ALGL †

JOO HO KANG

Abstract. In this paper the following is proved: Let L be a subspace

lattice on a Hilbert space H and X and Y be operators acting on H. Then
there exists a compact operator A in AlgL such that AX = Y if and only

if sup

{
∥E⊥Y f∥
∥E⊥Xf∥ : f ∈ H, E ∈ L

}
= K < ∞ and Y is compact. Moreover,

if the necessary condition holds, then we may choose an operator A such
that AX = Y and ∥A∥ = K.
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1. Introduction

Let C be a collection of operators acting on a Hilbert space H. An interpo-
lation question for C asks for which operators X and Y on H when is there a
bounded linear operator A (usually satisfying some other conditions) such that
AX = Y ? The ”other conditions” that have been of interest to us involve re-
stricting A to lie in the algebra associated with a subspace lattice. The simplest
case of the operator interpolation problem relaxes all restrictions on A, requiring
it simply to be a bounded operator. In this case, the existence of A is nicely
characterized by Douglas [2]. Another interpolation question for a given subal-
gebra ⌋ of B(H) asks for which vectors x and y in H is there a bounded operator
A ∈ C that maps x to y. Lance [6] initiated the discussion by considering a nest
N and asking what conditions on x and y will guarantee the existence of an
operator A in AlgN such that Ax = y. Hopenwasser [3] extended Lance’s result
to the case where the nest N is replaced by an arbitrary commutative subspace
lattice L. Munch [7] considered the problem of finding a Hilbert-Schmidt oper-
ator A in AlgN that maps x to y, whereupon Hopenwasser [4] again extended
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to AlgL. In [1], authors studied the problem of finding A so that Ax = y and A
is required to lie in certain ideals contained in AlgL (for a nest L).

Roughly speaking, when an operator maps one thing to another, we think
of the operator as the interpolating operator and the equation representing the
mapping as the interpolation equation. The equations Ax = y and AX = Y are
indistinguishable if spoken aloud, but we mean the change to capital letters to
indicate that we intend to look at fixed operators X and Y , and ask under what
conditions there will exist an operator A satisfying the equation AX = Y .

Let x and y be vectors in a Hilbert space. Then ⟨x, y⟩ means the inner
product of vectors x and y. Note that the ”vector interpolation” problem is a
special case of the ”operator interpolation” problem. Indeed, if we denote by
x ⊗ u the rank-one operator defined by the equation x ⊗ u(w) = ⟨w, u⟩x, and
if we set X = x ⊗ u, and Y = y ⊗ u, then the equations AX = Y and Ax = y
represent the same restriction on A.

Let H be a Hilbert space and N = {1, 2, . . .}. A bounded operator A on H
has finite-rank if rangeA is finite dimensional. A bounded operator A on H is
called compact if A(ballH) has compact closure in H, where ballH = {h ∈ H :
∥h∥ ≤ 1}. We denote B0(H) the set of all compact operators on H.

We will study finite-rank operator interpolation problems on L and find a
compact operator A in AlgL such that AX = Y for given X and Y in B(H) as
convergence of finite-rank operators. Also, we will study this problem for given
countable operators X1, X2, . . . and Y1, Y2, . . ..

Theorem 1.1 ([2]). Let X and Y be bounded operators acting on a Hilbert space
H. Then the following statements are equivalent:

(1) rangeY ∗ ⊆ range X∗

(2) Y ∗Y ≤ λ2X∗X for some λ ≥ 0
(3) there exists a bounded operator A on H so that AX = Y .

Moreover, if (1), (2), and (3) are valid, then there exists a unique operator A so
that

(a) ∥A∥2 = inf{µ : Y ∗Y ≤ µX∗X}
(b) kerY ∗ = kerA∗ and
(c) rangeA∗ ⊆ rangeX.

Lemma 1.2. Let A and X be bounded operators acting on a Hilbert space H.
(a) If X = y ⊗ x is a rank-one operator and Ay ̸= 0, then AX is a rank-one

operator.
(b) If X = (y1⊗ x1)+ (y2⊗ x2) is a rank-two operator and Ay1 and Ay2 are

linearly independent, then AX is a rank-two operator.

(c) If X =
n∑

i=1

yi ⊗ xi is a rank-n operator and Ay1, . . . , Ayn are linearly

independent, then AX is a rank-n operator.
(d) If X is a rank-n operator, then AX is a rank-m operator for m ≤ n.
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Proof. Let f ∈ H. Then (a) AXf = A(y ⊗ x)f = A⟨f, x⟩y = ⟨f, x⟩Ay. So AX
is a rank-one operator.

(b) AXf = A((y1⊗x1)+(y2⊗x2))f = A⟨f, x1⟩y1+A⟨f, x2⟩y2 = ⟨f, x1⟩Ay1+
⟨f, x2⟩Ay2 for all f ∈ H.

(c) AXf = A(
n∑

i=1

yi ⊗ xi)f = A
n∑

i=1

⟨f, xi⟩yi =
n∑

i=1

⟨f, xi⟩Ayi for all f ∈ H.

(d) can be easily obtained by using (a), (b) and (c). �

Theorem 1.3. Let X and Y be bounded operators acting on a Hilbert space H.
Then the following are equivalent:

(1) There is a rank-one operator A = y⊗x such that AX = Y and rangeX ̸⊂
{x}⊥.

(2) rangeY ∗ ⊆ rangeX∗ and Y is a rank-one operator.

Proof. If there exists a rank-one operator A = y ⊗ x such that AX = Y . Then
rangeY ∗ ⊆ rangeX∗. Since rangeX ̸⊂ {x}⊥, there exists a vector h in H such
that ⟨Xh, x⟩ ̸= 0. For any f in H, Y f = (y ⊗ x)Xf = ⟨Xf, x⟩y. So Y is a
rank-one operator.

Conversely, suppose rangeY ∗ ⊆ rangeX∗ and Y = y1⊗x1. Then there exists
an operator B in B(H) such that BX = Y . Then for each h ∈ H,

(y1 ⊗ x1)h = ⟨h, x1⟩y1 = BXh.

So B(rangeX) = rangeY = sp{y1}. Define A : rangeX → H by Ah = Bh
if h ∈ rangeX and Ah = 0 if h ∈ B(H). Since rangeA = B(rangeX) ⊂
B(rangeX) = sp{y1}, rangeA ⊂ sp{y1}. Since rangeA is a linear subspace
containing y1, sp{y1} ⊂ rangeA. Hence A is a rank-one operator and AX =
Y . �

Theorem 1.4. Let X and Y be bounded operators acting on a Hilbert space
H. If rangeY ∗ ⊆ rangeX. and Y is a finite-rank operator, then there exists a
finite-rank operator A such that AX = Y .

Proof. If Y is a finite-rank operator, then Y =
∑n

i=1 yi ⊗ xi, where y1, . . . , yn
are linearly independent. Since rangeY ∗ ⊆ rangeX∗, there exists an operator
B in B(H) such that BX = Y . For each h ∈ H,

BXh = Y h =
n∑

i=1

(yi ⊗ xi)h =
n∑

i=1

⟨h, xi⟩yi.

So B(rangeX) = sp{y1, . . . , yn}. Define A : rangeX → H by Ah = Bh if

h ∈ rangeX and Ah = 0 if h ∈ rangeX
⊥
. Then A ∈ B(H). And rangeA =

B(rangeX) ⊂ B(rangeX) = sp{y1, . . . , yn}. Therefore dim(rangeA) = n and
AX = Y . �
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2. Results

Theorem 2.1. Let L be a subspace lattice on H and let X and Y be operators
in B(H). Assume that the range of X is dense in H. Then the following are
equivalent:

(1) There exists a compact operator A in AlgL such that AX = Y .

(2) sup
{

∥E⊥Y f∥
∥E⊥Xf∥ : f ∈ H, E ∈ L

}
= K < ∞ and Y is compact.

Moreover, if condition (2) holds, we may choose an operator A such that ∥A∥ =
K.

Proof. Assume that sup
{

∥E⊥Y f∥
∥E⊥Xf∥ : f ∈ H, E ∈ L

}
= K < ∞. Then there

exists an operator A in AlgL such that AX = Y by Theorem 3.1 [5]. Since Y is
compact, there is a sequence {Yn} of finite-rank operators that converges to Y
in the norm topology on B(H). From the construction of Yn, since rangeY ∗

n ⊆
rangeY ∗ for each n ∈ N, rangeY ∗

n ⊆ rangeX∗ for each n ∈ N. By Theorems
1.4, there is a finite-rank operator An such that AnX = Yn for each n ∈ N. Since
Yn → Y in the norm topology on B(H), ∥An − A∥ → 0. Hence A is compact.
The proof of the converse is obvious. �

Theorem 2.2. Let L be a subspace lattice on H and let X1, . . . , Xn and Y1, . . . , Yn

be bounded operators acting on H. Let k be a fixed natural number in {1, 2, . . . , n}
and assume that Xk has dense range. Then the following are equivalent:

(1) There exists a compact operator A in AlgL such that AXi = Yi for each
i = 1, 2, . . . , n.

(2) sup
{

∥E⊥(
∑n

i=1 Yifi)∥
∥E⊥(

∑n
i=1 Xifi)∥ : fi ∈ H, E ∈ L

}
= K < ∞ and Yk is compact.

Moreover, if condition (2) holds, we may choose an operator A such that ∥A∥ =
K.

Proof. If sup
{

∥E⊥(
∑n

i=1 Yifi)∥
∥E⊥(

∑n
i=1 Xifi)∥ : fi ∈ H, E ∈ L

}
= K < ∞, and for given k in

{1, 2, . . . , n}, Yk is compact, then by Theorem 3.2 [5], there exists an operator A
in AlgL such that AXi = Yi for i = 1, 2, . . . , n. Since Yk is compact, there is a
sequence {Ykm

}of finite-rank operators that converges to Yk in the norm topology
on B(H). From the construction of Ykm , we know that rangeY ∗

km
⊆ rangeY ∗

k for
each m ∈ N. Therefore rangeY ∗

km
⊆ rangeX∗ for each m ∈ N. By Theorem 2.1,

for each m ∈ N, there is a finite-rank operator Akm such that AkmXk = Ykm .
Since Ykm → Yk in the norm topology on B(H), ∥Akm − A∥ → 0. Hence A is
compact. We omit the proof of the converse since it can be proved easily. �

Theorem 2.3 ([5]). Let L be a subspace lattice on H and let X1, . . . , Xn and
Y1, . . . , Yn be bounded operators acting on H. Let k be a fixed natural number in
{1, 2, . . . , n} and assume that Xk has dense range and Re⟨E⊥Xif,E

⊥Xjg⟩ ≥ 0
for each E in L, i < j and all f, g in H. Then the following are equivalent:

(1) rangeE⊥Y ∗
i ⊆ rangeE⊥X∗

i for each E in L and i = 1, 2, . . . , n.
(2) There exists an operator A in AlgL such that AXi = Yi for i = 1, 2, . . . , n.
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(3) sup
{

∥E⊥(
∑n

i=1 Yifi)∥
∥E⊥(

∑n
i=1 Xifi)∥ : fi ∈ H, E ∈ L

}
< ∞.

By the Theorem 2.3, we can get the following Theorem.

Theorem 2.4. Let L be a subspace lattice on H and let X1, . . . , Xn and Y1, . . . , Yn

be bounded operators acting on H. Let k be a fixed natural number in {1, 2, . . . , n}
and assume that Xk has dense range. If for i < j in {1, 2, . . . , n} and all f, g in
H, Re⟨E⊥Xif,E

⊥Xjg⟩ ≥ 0, then the following are equivalent:
(1) rangeE⊥Y ∗

i ⊆ rangeE⊥X∗
i for each E in L and i = 1, 2, . . . , n, and Yk

is compact.
(2) There exists a compact operator A in AlgL such that AXi = Yi for i =

1, 2, . . . , n.

If we observe the proof of the above theorems, we can generalize Theorem 2.2
to the countable case easily.

Theorem 2.5. Let L be a subspace lattice on H and let Xi and Yi be bounded
operators acting on H for all i = 1, 2, . . . , n. Let k be a fixed natural number
in {1, 2, . . . , n} and assume that Xk has dense range. Then the following are
equivalent:

(1) There exists a compact operator A in AlgL such that AXi = Yi for i =
1, 2, . . . , n.

(2) sup
{

∥E⊥(
∑n

i=1 Yifi)∥
∥E⊥(

∑n
i=1 Xifi)∥ : fi ∈ H, E ∈ L, m ∈ N

}
= K < ∞ and Yk is com-

pact.
Moreover, if condition (2) holds, we may choose an operator an operator A such
that ∥A∥ = K.

Theorem 2.6. Let L be a subspace lattice on H and let Xi and Yi be bounded
operators acting on H for all i = 1, 2, . . . , n. Let k be a fixed natural number
in {1, 2, . . . , n} and assume that Xk has dense range and Re⟨E⊥Yif,E

⊥Yjg⟩ ≤
Re⟨E⊥Xif,E

⊥Xjg⟩ for each E in L, i < j and allf, g in H, then the following
are equivalent:

(1) There exists M ≥ 0 such that sup
{

∥E⊥Yif∥
∥E⊥Xif∥ : f ∈ H, E ∈ L

}
< M for

each i ∈ N and Yk is compact.
(2) There is a compact operator A in AlgL such that AXi = Yi for i =

1, 2, . . . , n.
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