• Title/Summary/Keyword: $In_{0.8}Ga_{0.2}As$

Search Result 424, Processing Time 0.027 seconds

RTA Effect on Transport Characteristics in Al0.25Ga0.75As/In0.2Ga0.8As pHEMT Epitaxial Structures Grown by Molecular Beam Epitaxy (MBE로 성장된 Al0.25Ga0.75As/In0.2Ga0.8As pHEMT 에피구조의 RTA에 따른 전도 특성)

  • Kim, Kyung-Hyun;Hong, Sung-Ui;Paek, Moon-Cheol;Cho, Kyung-Ik;Choi, Sang-Sik;Yang, Jeon-Wook;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.605-610
    • /
    • 2006
  • We have investigated $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ structures for pseudomorphic high electron mobility transistor(pHEMT), which were grown by molecular beam epitaxy(MBE) and consequently annealed by rapid thermal anneal(RTA), using Hall measurement, photoluminescence, and transmission electron microscopy (TEM). According to intensity and full-width at half maximum maintained stable at the same energy level, the quantized energy level in $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ quantum wells was independent of the RTA conditions. However, the Hall mobility was decreased from $6,326cm^2/V.s\;to\;2,790cm^2/V.s\;and\;2,078cm^2/V.s$ after heat treatment respectively at $500^{\circ}C\;and\;600^{\circ}C$. The heat treatment which is indispensable during the fabrication procedure would cause catastrophic degradation in electrical transport properties. TEM observation revealed atomically non-uniform interfaces, but no dislocations were generated or propagated. From theoretical consideration about the mobility changes owing to inter-diffusion, the degraded mobility could be directly correlated to the interface scattering as long as samples were annealed below $600^{\circ}C$ lot 1 min.

Design and Fabrication of AlGaAs/GaAs MESFET for Minimizing Leakage Current

  • Hak, Lee-Byung;Rak, Yoon-Jung;Yul, Kwon-Jung;Yong, Lee-Heon;Rea, Jeong-Young;Hyun, Kwak-Myung;Sung, Ma-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.160-163
    • /
    • 1996
  • To develope output characteristics of GaAs MESFET, which utilized in high frequency ranges, $Al_{0.2}$Ga$_{0.8}$As/GaAs layer was used. In this case, to minimize effects of deep-level in $Al_{0.2}$Ga$_{0.8}$As/GaAs layer, aluminium mole fraction was design to 0.2. HP 4145B was used in measurement, I$_{dss}$ was 25mA when V$_{G}$=0. Maximum transconductance was 168.75mS/mm, electron mobility was 3750 $\textrm{cm}^2$/V-s, therefore, it must be suitable for active device in MMIC. Also, Ideality factor was 1.26, which was similar to that of ideal schottky diode.

  • PDF

Contactless Electroreflectance Spectroscopy of In0.5(Ga1-xAlx)0.5P/GaAs Double Heterostructures (In0.5(Ga1-xAlx)0.5P/GaAs 이중 이종접합 구조의 Contactless Electroreflectance에 관한 연구)

  • Kim, Jeong-Hwa;Jo, Hyun-Jun;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.134-140
    • /
    • 2010
  • We have investigated the contactless electroreflectance (CER) properties of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs double heterostructures grown by metal-organic chemical vapour deposition (MOCVD). The CER measurements on the sample were studied as a function of temperature, modulation voltage ($V_{ac}$), and dc bias voltage ($V_{bias}$). Five signals observed at room temperature are related to the GaAs, $In_{0.5}Ga_{0.5}P$, $In_{0.5}(Ga_{0.73}Al_{0.27})_{0.5}P$, $In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P$, and $In_{0.5}(Ga_{0.2}Al_{0.8})_{0.5}P$ transitions, respectively. From the temperature dependence of CER spectrum, the Varshni coefficients and broadening parameters were determined and discussed. In addition, we found that the behavior of the CER amplitude for the reverse bias is larger than that of the forward.

Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications (센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구)

  • Jo, Hyeon-Bhin;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

Heteroface p-$Al_{x}Ga_{1-x}As/p-GaAs/n-GaAs/n^{+}$-GaAs Solar Cell Grown by MOCVD (MOCVD를 이용한 Heteroface p-$Al_{x}Ga_{1-x}As/p-GaAs/n-GaAs/n^{+}$-GaAs 태양전지의 개발)

  • 창기근;임성규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.1
    • /
    • pp.30-39
    • /
    • 1991
  • The influence of physical parameters (Al mole fraction, thickness, doping concentration) in the window and emitter on the efficiency characteristics of heteroface p-$Al_{x}Ga_{1-x}As/p-GaAs/n-GaAs/n^{+}$-GaAs solar cell is investigated. The maximum efficiency theoretically calculated in this device is obtained when a thickness of the window is in a range of (400-1000))$\AA$and a thickness/doping concentration of the emitter is in a range of (0.5-0.8)$\mu$m/(1-7)${\times}10^{17}cm^{-3}$, respectively. Also is the efficiency improved according to the increase of Al mole fraction in the indirect gap window(0.41${\le}x{\le}1.0$). The optimum designed heteroface cell with an area of 0.165cm$^2$fabricated using MOCVD exhibits an active area conversion efficiency of 17%, having a short circuit current density of 21.2mA/cm\ulcorner an open circuit voltage of 0.94V, and a fill factor of 0.75 under ELH-100mW/cm$^2$illumination.

  • PDF

Extraction of Material Parameters and Design of Schottky Diode UV Detectors Using a Transfer Matrix Method (전달 행렬 방법을 이용한 Schottky 다이오드 자외선 광검출기의 물질특성 추출과 설계)

  • Kim Jin-Hyung;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.25-33
    • /
    • 2006
  • We have extracted the material parameters such as absorption coefficients of GaN, $Al_{0.2}Ga_{0.8}N$, and Schottky contact metal Ni of Schottky Diode UV-A and B detectors using a transfer matrix method (TMM). The ratios of the absorbed light to the total incident amount at the depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$ have been calculated in order to obtain the spectral responsivity. Absorption coefficients of the materials have been obtained by fitting the simulated data with measured data. The depletion layer thickness has been obtanied by capacitance-voltage measurement. The results pave the way for the optimum design of UV Schottky detectors. Since the absorption coefficient of the Ni electrode is very high, its thickness is a major factor that determines the responsivity. It is possible to attain improved UV detectors using thinnest possible Ni electrodes and wide depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$.

Growth of $In_{0.53}Ga_{0.47}As$ Iattice matched to Inp substrate by low pressure metalorganic chemical vapor deposition (저압 유기금속 화학증착법을 이용한 InP 기판에 격자 일치된 $In_{0.53}Ga_{0.47}As$ 에피층의 성장)

  • 박형수;문영부;윤의준;조학동;강태원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.206-212
    • /
    • 1996
  • $In_{1-x}Ga_xAs$ epitaxial layers were grown at 76 Torr by low pressure metalorganic chemical vapor deposition (LP-MOCVD). Growth rate did not change much with growth temperature. Surface morphology of $In_{1-x}Ga_xAs$ epitaxial layer was affected by lattice mismatch, growth temperature and $AsH_3/(TMIn+TMGa)$ ratio. A high quality epilayer showed a full width at half maximum of 2.8 meV by photoluminescence measurement at 5K. The composition of the $In_{1-x}Ga_xAs$ was determined by the relative gas phase diffusion of TMIn and TMGa. Lattice mismatch and growth temperature were the most important variables that determine the electrical properties of $In_{1-x}Ga_xAs$ epitaxial layers. At optimized growth condition, it was possible to obtain a high quality $In_{1-x}Ga_xAs$ epilayers with a electron concentration as low as $8{\times}10^{14}/cm^3$ and an electron mobility as high as 11,000$\textrm{cm}^2$/Vsec at room temperature.

  • PDF

Changes in the Growth and Quality of Creeping Bentgrass (Agrostis palustris Huds. 'Penn A1') Following Gibberelinic Acid (GA3) Treatment (지베렐린산(GA3) 처리에 따른 크리핑 벤트그래스 (Agrostis palustris Huds. 'Penn A1')의 생장 및 품질 변화)

  • Woo-Sung Kim;Tae-Wooung Kim;Young-Sun Kim;Chi-Hwan Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.389-395
    • /
    • 2023
  • This study evaluated the effects of gibberellic acid (GA3) on the growth and quality of creeping bentgrass (Agrostis palustris Huds.). Experimental treatments included a No application of fertilizer and GA3 (NFG) Control [3 N active ingredient (a.i.) g/m2], 0.3GA3 (GA3 0.3 a.i. mg/m2/200 mL), 0.6GA3 (GA3 0.6 a.i. mg/m2/200 mL), 1.2GA3 (GA3 1.2 a.i. mg/m2/200 mL), and 2.4GA3 (GA3 2.4 a.i. mg/m2/200 mL). Additionally, the study included a 1.5N+GA3 experiment with similar GA3 treatments combined with 1.5N a.i. g/m2 : NFG, Control (3N a.i. g/m2), 1.5N+ 0.3GA3 (1.5N a.i. g/m2+GA3 0.3 a.i. mg/m2/200 mL), 1.5N+0.6GA3 (1.5N a.i. g/m2+GA3 0.6 a.i. mg/m2/200 mL), 1.5N+1.2GA3 (1.5N a.i. g/m2+GA3 1.2 a.i. mg/m2/ 200 mL), and 1.5N+2.4GA3 (1.5N a.i. g/m2+GA3 2.4 a.i. mg/m2/200 mL). Compared to the NFG, turf color index chlorophyll content was not significantly different (p< 0.05). However, shoot length in 1.2GA3, 2.4GA3, 1.5N+0.3GA3, 1.5N+0.6GA3, 1.5N+1.2GA3, and 1.5N+2.4GA3 treatments increased by 0.8%, 10.6%, 5.15%, 8.3%, 13.5 %, and 21.6%, respectively, compared to the control. As compared to the control, clipping yield in 1.5N+1.2GA3 and 1.5N+2.4GA3 treatments increased by 7.1% and 14.3 %, respectively. These results indicated that GA3 application increased shoot length, with the 1.2GA3 treatment showing shoot length similar to the control (3N a.i. g /m2 ).

Annealing of Electrodeposited Cu(In,Ga)Se2 Thin Films Under Se Gas Atmosphere (전해증착 Cu(In,Ga)Se2 박막의 Se가스 분위기 열처리)

  • Shin, Su-Jung;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.461-467
    • /
    • 2011
  • Cu(In, Ga)$Se_2$ (CIGS) precursor films were electrodeposited on Mo/glass substrates in acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$, and $Se^{4+}$ ions at -0.6 V (SCE) and pH. 1.8. In order to induce recrystallization, the electrodeposited $Cu_{1.00}In_{0.81}Ga_{0.09}Se_{2.08}$ (25.0 at.% Cu + 20.2 at.% In + 2.2 at.% Ga + 52.0 at.% Se) precursor films were annealed under a high Se gas atmosphere for 15, 30, 45, and 60 min, respectively, at $500^{\circ}C$. The Se amount in the film increased from 52 at.% to 62 at.%, whereas the In amount in the film decreased from 20.8 at.% to 9.1 at.% as the annealing time increased from 0 (asdeposited state) to 60 min. These results were attributed to the Se introduced from the furnace atmosphere and reacted with the In present in the precursor films, resulting in the formation of the volatile $In_2Se$. CIGS precursor grains with a cauliflower shape grew as larger grains with the $CuSe_2$ and/or $Cu_{2-x}Se$ faceted phases as the annealing times increased. These faceted phases resulted in rough surface morphologies of the CIGS films. Furthermore, the CIGS layers were not dense because the empty spaces between the grains were not removed via annealing. Uniform thicknesses of the $MoSe_2$ layers occurred at the 45 and 60 min annealing time. This implies that there was a stable reaction between the Mo back electrode and the Se diffused through the CIGS film. The results obtained in the present research were sufficiently different from comparable studies where the recrystallization annealing was performed under an atmosphere of Ar gas only or a low Se gas pressure.

Reduction of Contact Resistance Between Ni-InGaAs Alloy and In0.53Ga0.47As Using Te Interlayer

  • Li, Meng;Shin, Geon-Ho;Lee, Hi-Deok;Jun, Dong-Hwan;Oh, Jungwoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.253-256
    • /
    • 2017
  • A thin Te interlayer was applied to a Ni/n-InGaAs contact to reduce the contact resistance between Ni-InGaAs and n-InGaAs. A 5-nm-thick Te layer was first deposited on a Si-doped n-type $In_{0.53}Ga_{0.47}As$ layer, followed by in situ deposition of a 30-nm-thick Ni film. After the formation of the Ni-InGaAs alloy by rapid thermal annealing at $300^{\circ}C$ for 30 s, the extracted specific contact resistivity (${\rho}_c$) reduced by more than one order of magnitude from $2.86{\times}10^{-4}{\Omega}{\cdot}cm^2$ to $8.98{\times}10^{-6}{\Omega}{\cdot}cm^2$ than that of the reference sample. A thinner Ni-InGaAs alloy layer with a better morphology was obtained by the introduction of the Te layer. The improved interface morphology and the graded Ni-InGaAs layer formed at the interface were believed to be responsible for ${\rho}_c$ reduction.