DOI QR코드

DOI QR Code

Reduction of Contact Resistance Between Ni-InGaAs Alloy and In0.53Ga0.47As Using Te Interlayer

  • Li, Meng (Department of Electronics Engineering, Chungnam National University) ;
  • Shin, Geon-Ho (Department of Electronics Engineering, Chungnam National University) ;
  • Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University) ;
  • Jun, Dong-Hwan (Technology Development Division, Korea Advanced Nano Fab Center) ;
  • Oh, Jungwoo (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
  • Received : 2017.04.28
  • Accepted : 2017.07.11
  • Published : 2017.10.25

Abstract

A thin Te interlayer was applied to a Ni/n-InGaAs contact to reduce the contact resistance between Ni-InGaAs and n-InGaAs. A 5-nm-thick Te layer was first deposited on a Si-doped n-type $In_{0.53}Ga_{0.47}As$ layer, followed by in situ deposition of a 30-nm-thick Ni film. After the formation of the Ni-InGaAs alloy by rapid thermal annealing at $300^{\circ}C$ for 30 s, the extracted specific contact resistivity (${\rho}_c$) reduced by more than one order of magnitude from $2.86{\times}10^{-4}{\Omega}{\cdot}cm^2$ to $8.98{\times}10^{-6}{\Omega}{\cdot}cm^2$ than that of the reference sample. A thinner Ni-InGaAs alloy layer with a better morphology was obtained by the introduction of the Te layer. The improved interface morphology and the graded Ni-InGaAs layer formed at the interface were believed to be responsible for ${\rho}_c$ reduction.

Keywords

References

  1. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.S.P. Wong, Proc. IEEE, 89 , 259 (2001). [DOI: https://doi.org/10.1109/5.915374]
  2. S. Oktyabrsky and P. D. Ye (eds.), Fundamentals of III-V Semiconductor MOSFETs (Springer Science+Business Media LLC, 2010), Chap. 2. [DOI: https://doi.org/10.1007/978-1-4419-1547-4]
  3. A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. D. Meyer, IEEE Trans. Electron Devices, 52, 1132 (2005). [DOI: https://doi.org/10.1109/TED.2005.848098]
  4. J. A. del Alamo, Nature, 479, 317 (2011). [DOI: https://doi.org/10.1038/nature10677]
  5. X. Zhang, H. Guo, X. Gong, Q. Zhou, Y. R. Lin, H. Y. Lin, C. H. Ko, C. H. Wann, and Y. C. Yeo, Electrochem. Solid-State Lett., 14, H60 (2011). [DOI: https://doi.org/10.1149/1.3516213]
  6. X. Zhang, H. X. Guo, X. Gong, and Y. C. Yeo, ECS J. Solid State Sci. Technol., 1, P82 (2012). [DOI: https://doi.org/10.1149/2.014202jss]
  7. S. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, IEEE Trans. Electron Devices, 60, 2512 (2013). [DOI: https://doi.org/10.1109/TED.2013.2270558]
  8. X. Zhang, H. Guo, H. Y. Lin, Ivana, X. Gong, Q. Zhou, Y. R. Lin, C. H. Ko, C. H. Wann, and Y. C. Yeo, Electrochem. Solid-State Lett., 14, H212 (2011). [DOI: https://doi.org/10.1149/1.3559754]
  9. S. Subramanian, Ivana, Q. Zhou, X. Zhang, M. Balakrishnan, and Y. C. Yeo, J. Electrochem. Soc., 159, H16 (2012). [DOI: https://doi.org/10.1149/2.020201jes]
  10. X. Zhang, Ivana, H. X. Guo, X. Gong, Q. Zhou, and Y. C. Yeo, J. Electrochem. Soc., 159, H511 (2012). [DOI: https://doi.org/10.1149/2.060205jes]
  11. S. H. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Appl. Phys. Lett., 100, 073504 (2012). [DOI: http://dx.doi.org/10.1063/1.3685505]
  12. E.Y.J. Kong, Ivana, X. Zhang, Q. Zhou, J. Pan, Z. Zhang, and Y. C. Yeo, Solid-State Electron., 85, 36 (2013). [DOI: https://doi.org/10.1016/j.sse.2013.02.036]
  13. S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Proc. 2010 International Electron Devices Meeting (IEEE, San Francisco, USA, 2010) p. 596. [DOI: https://doi.org/10.1109/IEDM.2010.5703429]
  14. S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Appl. Phys. Express, 4, 024201 (2011). [DOI: https://doi.org/10.1143/APEX.4.024201]
  15. S. Subramanian, Ivana, and Y. C. Yeo, Proc. Technical Program of 2012 VLSI Technology, System and Application (IEEE, Hsinchu, Taiwan, 2012) p. 1. [DOI: https://doi.org/10.1109/VLSI-TSA.2012.6210150]
  16. R. Oxland, S. W. Chang, X. Li, S. W. Wang, G. Radhakrishnan, W. Priyantha, M.J.H. van Dal, C. H. Hsieh, G. Vellianitis, G. Doornbos, K. Bhuwalka, B. Duriez, I. Thayne, R. Droopad, M. Passlack, C. H. Diaz, and Y. C. Sun, IEEE Electron Device Lett., 33, 501 (2012). [DOI: https://doi.org/10.1109/LED.2012.2185919]
  17. S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, and M. Takenaka, Solid State Electron., 88, 2 (2013). [DOI: https://doi.org/10.1016/j.sse.2013.04.020]
  18. D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, Inc., 2006) p. 144. [DOI: https://doi.org/10.1002/0471749095]
  19. D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, Inc., 2006) p. 149. [DOI: https://doi.org/10.1002/0471749095]
  20. S. Mehari, A. Gavrilov, S. Cohen, P. Shekhter, M. Eizenberg, and D. Ritter, Appl. Phys. Lett., 101, 072103 (2012). [DOI: http://dx.doi.org/10.1063/1.4746254]