Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.2.134

Contactless Electroreflectance Spectroscopy of In0.5(Ga1-xAlx)0.5P/GaAs Double Heterostructures  

Kim, Jeong-Hwa (Department of Physics, Yeungnam University)
Jo, Hyun-Jun (Department of Physics, Yeungnam University)
Bae, In-Ho (Department of Physics, Yeungnam University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.2, 2010 , pp. 134-140 More about this Journal
Abstract
We have investigated the contactless electroreflectance (CER) properties of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs double heterostructures grown by metal-organic chemical vapour deposition (MOCVD). The CER measurements on the sample were studied as a function of temperature, modulation voltage ($V_{ac}$), and dc bias voltage ($V_{bias}$). Five signals observed at room temperature are related to the GaAs, $In_{0.5}Ga_{0.5}P$, $In_{0.5}(Ga_{0.73}Al_{0.27})_{0.5}P$, $In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P$, and $In_{0.5}(Ga_{0.2}Al_{0.8})_{0.5}P$ transitions, respectively. From the temperature dependence of CER spectrum, the Varshni coefficients and broadening parameters were determined and discussed. In addition, we found that the behavior of the CER amplitude for the reverse bias is larger than that of the forward.
Keywords
$In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs double heterostructures; CER; Broadening parameters; Varshni coefficients;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. P. Aspnes, Phys. Rev. B, 10, 4228 (1974).   DOI
2 E. Kapon, semiconductor Laser (Academic Press, London, 1999), pp. 4-8.
3 K. F. Hyang, K. Tai, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 54, 2026 (1989).   DOI
4 J. M. Wrobel, U. K. Reddy, L. C. Bassett, J. L. Aubel, and S. Sundaram, J. Appl. Phys. 60, 368 (1986).   DOI
5 Arto V. Nurmikko and P. L. Gunshor, Solid State Commun, 92, 113 (1994).   DOI
6 R. Kudrawiec, M. Motyka, J. Misiewicz, B. Paszkiewicz, R. Paszkiewicz, and M. Tłaczała, Microelectronics Journal 40, 370 (2009).   DOI
7 F. H. Pollak and H. Shen, Mater. Sci. Eng. R. 10, xv (1993).   DOI
8 M. Motyka, R. Kudrawiec, M. Syperek, J. Misiewicz, M. Rudzinski, P. R. Hageman, and P. K. Larsen, Thin Solid Films 515, 4662 (2007).   DOI
9 김기홍, 심준형, 배인호, 한국진공학회 18, 208 (2009).   과학기술학회마을
10 P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).   DOI
11 R. Kudrawiec, M. Motyka, M. Gladysiewicz, J. Misiewicz, J. A. Gupta, and G. C. Aers, Solid State Communications 138, 365 (2006).   DOI
12 K. Itaya, H. Sugawara, and G. Hatakoshi, J. Crystal Growth, 138, 768 (1994).   DOI
13 M. Cardona, Modulation Spectroscopy (Academic Press, New York, 1969), pp. 11.
14 O. G Koshelev and V. A. Morozova, Solid-State Electronics 39, 1379 (1996).   DOI
15 Z. Qingke, Z. Xianfu, L. Changjun, and Songhao, Solid-State Electronics 42, 993 (1998).   DOI
16 J. S. Roberts, G. B scott, and J. P. Gowers, J. Appl. Phys. 52, 4018 (1981).   DOI
17 H. Chui, N. F. Gardner, P. N. Grillot, J. W. Huang, M. R. Krames, and S. A Maranowski, Semiconductors and Semimetals 64, 49 (2000).
18 Y. P. Varshni, Physica 34, 149 (1967).   DOI
19 C. P. Kuo, R. M. Fletcher, T. D. Osentowiski, M, C. Lardizable, M. G. Graford, and V. M. Robbins, Appl. Phys. Lett. 57, 2937 (1990).   DOI
20 J. S. Blackemore, J. Appl. Phys. 53, R123 (1982).   DOI