DOI QR코드

DOI QR Code

Contactless Electroreflectance Spectroscopy of In0.5(Ga1-xAlx)0.5P/GaAs Double Heterostructures

In0.5(Ga1-xAlx)0.5P/GaAs 이중 이종접합 구조의 Contactless Electroreflectance에 관한 연구

  • Received : 2009.12.10
  • Accepted : 2010.01.12
  • Published : 2010.03.30

Abstract

We have investigated the contactless electroreflectance (CER) properties of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs double heterostructures grown by metal-organic chemical vapour deposition (MOCVD). The CER measurements on the sample were studied as a function of temperature, modulation voltage ($V_{ac}$), and dc bias voltage ($V_{bias}$). Five signals observed at room temperature are related to the GaAs, $In_{0.5}Ga_{0.5}P$, $In_{0.5}(Ga_{0.73}Al_{0.27})_{0.5}P$, $In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P$, and $In_{0.5}(Ga_{0.2}Al_{0.8})_{0.5}P$ transitions, respectively. From the temperature dependence of CER spectrum, the Varshni coefficients and broadening parameters were determined and discussed. In addition, we found that the behavior of the CER amplitude for the reverse bias is larger than that of the forward.

Metal-organic chemical vapour deposition (MOCVD)법으로 성장된 $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs 이중 이종접합 구조의 특성을 contactless electroreflectance (CER) 분광법으로 조사하였다. CER 측정은 변조전압($V_{ac}$), 온도 및 dc 바이어스 전압($V_{bias}$)의 함수로 수행하였다. 상온에서는 5개의 신호가 관측되었는데, 이 신호들은 각각 GaAs, $In_{0.5}Ga_{0.5}P$, $In_{0.5}(Ga_{0.73}Al_{0.27})_{0.5}P$, $In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P$$In_{0.5}(Ga_{0.2}Al_{0.8})_{0.5}P$ 전이에 관련된 것이다. CER 스펙트럼의 온도 의존성으로부터 Varshni 계수 및 평탄인 자를 구하였다. 그리고 인가전압에 따른 신호의 진폭은 순방향 바이어스 전압 인가시 점차로 감소하나, 역방향 바이어스 전압 인가시에는 반대의 경향을 보였다.

Keywords

References

  1. C. P. Kuo, R. M. Fletcher, T. D. Osentowiski, M, C. Lardizable, M. G. Graford, and V. M. Robbins, Appl. Phys. Lett. 57, 2937 (1990). https://doi.org/10.1063/1.103736
  2. Z. Qingke, Z. Xianfu, L. Changjun, and Songhao, Solid-State Electronics 42, 993 (1998). https://doi.org/10.1016/S0038-1101(98)00095-1
  3. Arto V. Nurmikko and P. L. Gunshor, Solid State Commun, 92, 113 (1994). https://doi.org/10.1016/0038-1098(94)90864-8
  4. E. Kapon, semiconductor Laser (Academic Press, London, 1999), pp. 4-8.
  5. K. Itaya, H. Sugawara, and G. Hatakoshi, J. Crystal Growth, 138, 768 (1994). https://doi.org/10.1016/0022-0248(94)90905-9
  6. F. H. Pollak and H. Shen, Mater. Sci. Eng. R. 10, xv (1993). https://doi.org/10.1016/0927-796X(93)90004-M
  7. 김기홍, 심준형, 배인호, 한국진공학회 18, 208 (2009).
  8. R. Kudrawiec, M. Motyka, J. Misiewicz, B. Paszkiewicz, R. Paszkiewicz, and M. Tłaczała, Microelectronics Journal 40, 370 (2009). https://doi.org/10.1016/j.mejo.2008.07.028
  9. R. Kudrawiec, M. Motyka, M. Gladysiewicz, J. Misiewicz, J. A. Gupta, and G. C. Aers, Solid State Communications 138, 365 (2006). https://doi.org/10.1016/j.ssc.2006.02.041
  10. M. Motyka, R. Kudrawiec, M. Syperek, J. Misiewicz, M. Rudzinski, P. R. Hageman, and P. K. Larsen, Thin Solid Films 515, 4662 (2007). https://doi.org/10.1016/j.tsf.2006.12.008
  11. D. P. Aspnes, Phys. Rev. B, 10, 4228 (1974). https://doi.org/10.1103/PhysRevB.10.4228
  12. M. Cardona, Modulation Spectroscopy (Academic Press, New York, 1969), pp. 11.
  13. J. S. Blackemore, J. Appl. Phys. 53, R123 (1982). https://doi.org/10.1063/1.331665
  14. J. S. Roberts, G. B scott, and J. P. Gowers, J. Appl. Phys. 52, 4018 (1981). https://doi.org/10.1063/1.329211
  15. H. Chui, N. F. Gardner, P. N. Grillot, J. W. Huang, M. R. Krames, and S. A Maranowski, Semiconductors and Semimetals 64, 49 (2000).
  16. O. G Koshelev and V. A. Morozova, Solid-State Electronics 39, 1379 (1996). https://doi.org/10.1016/0038-1101(96)00040-8
  17. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987). https://doi.org/10.1103/PhysRevB.35.9174
  18. K. F. Hyang, K. Tai, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 54, 2026 (1989). https://doi.org/10.1063/1.101181
  19. Y. P. Varshni, Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  20. J. M. Wrobel, U. K. Reddy, L. C. Bassett, J. L. Aubel, and S. Sundaram, J. Appl. Phys. 60, 368 (1986). https://doi.org/10.1063/1.337655

Cited by

  1. Electroreflectance Study of ZnSe in ZnSe/GaAs Heterostructure vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.322