Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.5.253

Reduction of Contact Resistance Between Ni-InGaAs Alloy and In0.53Ga0.47As Using Te Interlayer  

Li, Meng (Department of Electronics Engineering, Chungnam National University)
Shin, Geon-Ho (Department of Electronics Engineering, Chungnam National University)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam National University)
Jun, Dong-Hwan (Technology Development Division, Korea Advanced Nano Fab Center)
Oh, Jungwoo (School of Integrated Technology, Yonsei Institute of Convergence Technology, Yonsei University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.5, 2017 , pp. 253-256 More about this Journal
Abstract
A thin Te interlayer was applied to a Ni/n-InGaAs contact to reduce the contact resistance between Ni-InGaAs and n-InGaAs. A 5-nm-thick Te layer was first deposited on a Si-doped n-type $In_{0.53}Ga_{0.47}As$ layer, followed by in situ deposition of a 30-nm-thick Ni film. After the formation of the Ni-InGaAs alloy by rapid thermal annealing at $300^{\circ}C$ for 30 s, the extracted specific contact resistivity (${\rho}_c$) reduced by more than one order of magnitude from $2.86{\times}10^{-4}{\Omega}{\cdot}cm^2$ to $8.98{\times}10^{-6}{\Omega}{\cdot}cm^2$ than that of the reference sample. A thinner Ni-InGaAs alloy layer with a better morphology was obtained by the introduction of the Te layer. The improved interface morphology and the graded Ni-InGaAs layer formed at the interface were believed to be responsible for ${\rho}_c$ reduction.
Keywords
Contact resistance; InGaAs; Ni-InGaAs; Te interlayer; n-MOSFETs;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.S.P. Wong, Proc. IEEE, 89 , 259 (2001). [DOI: https://doi.org/10.1109/5.915374]   DOI
2 S. Oktyabrsky and P. D. Ye (eds.), Fundamentals of III-V Semiconductor MOSFETs (Springer Science+Business Media LLC, 2010), Chap. 2. [DOI: https://doi.org/10.1007/978-1-4419-1547-4]
3 A. Dixit, A. Kottantharayil, N. Collaert, M. Goodwin, M. Jurczak, and K. D. Meyer, IEEE Trans. Electron Devices, 52, 1132 (2005). [DOI: https://doi.org/10.1109/TED.2005.848098]   DOI
4 J. A. del Alamo, Nature, 479, 317 (2011). [DOI: https://doi.org/10.1038/nature10677]   DOI
5 X. Zhang, H. Guo, X. Gong, Q. Zhou, Y. R. Lin, H. Y. Lin, C. H. Ko, C. H. Wann, and Y. C. Yeo, Electrochem. Solid-State Lett., 14, H60 (2011). [DOI: https://doi.org/10.1149/1.3516213]   DOI
6 X. Zhang, H. X. Guo, X. Gong, and Y. C. Yeo, ECS J. Solid State Sci. Technol., 1, P82 (2012). [DOI: https://doi.org/10.1149/2.014202jss]   DOI
7 S. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, IEEE Trans. Electron Devices, 60, 2512 (2013). [DOI: https://doi.org/10.1109/TED.2013.2270558]   DOI
8 X. Zhang, H. Guo, H. Y. Lin, Ivana, X. Gong, Q. Zhou, Y. R. Lin, C. H. Ko, C. H. Wann, and Y. C. Yeo, Electrochem. Solid-State Lett., 14, H212 (2011). [DOI: https://doi.org/10.1149/1.3559754]   DOI
9 S. Subramanian, Ivana, Q. Zhou, X. Zhang, M. Balakrishnan, and Y. C. Yeo, J. Electrochem. Soc., 159, H16 (2012). [DOI: https://doi.org/10.1149/2.020201jes]   DOI
10 X. Zhang, Ivana, H. X. Guo, X. Gong, Q. Zhou, and Y. C. Yeo, J. Electrochem. Soc., 159, H511 (2012). [DOI: https://doi.org/10.1149/2.060205jes]   DOI
11 S. H. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Appl. Phys. Lett., 100, 073504 (2012). [DOI: http://dx.doi.org/10.1063/1.3685505]   DOI
12 E.Y.J. Kong, Ivana, X. Zhang, Q. Zhou, J. Pan, Z. Zhang, and Y. C. Yeo, Solid-State Electron., 85, 36 (2013). [DOI: https://doi.org/10.1016/j.sse.2013.02.036]   DOI
13 S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Proc. 2010 International Electron Devices Meeting (IEEE, San Francisco, USA, 2010) p. 596. [DOI: https://doi.org/10.1109/IEDM.2010.5703429]
14 S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, Appl. Phys. Express, 4, 024201 (2011). [DOI: https://doi.org/10.1143/APEX.4.024201]   DOI
15 S. Subramanian, Ivana, and Y. C. Yeo, Proc. Technical Program of 2012 VLSI Technology, System and Application (IEEE, Hsinchu, Taiwan, 2012) p. 1. [DOI: https://doi.org/10.1109/VLSI-TSA.2012.6210150]
16 R. Oxland, S. W. Chang, X. Li, S. W. Wang, G. Radhakrishnan, W. Priyantha, M.J.H. van Dal, C. H. Hsieh, G. Vellianitis, G. Doornbos, K. Bhuwalka, B. Duriez, I. Thayne, R. Droopad, M. Passlack, C. H. Diaz, and Y. C. Sun, IEEE Electron Device Lett., 33, 501 (2012). [DOI: https://doi.org/10.1109/LED.2012.2185919]   DOI
17 S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, and M. Takenaka, Solid State Electron., 88, 2 (2013). [DOI: https://doi.org/10.1016/j.sse.2013.04.020]   DOI
18 D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, Inc., 2006) p. 144. [DOI: https://doi.org/10.1002/0471749095]
19 S. Mehari, A. Gavrilov, S. Cohen, P. Shekhter, M. Eizenberg, and D. Ritter, Appl. Phys. Lett., 101, 072103 (2012). [DOI: http://dx.doi.org/10.1063/1.4746254]   DOI
20 D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, Inc., 2006) p. 149. [DOI: https://doi.org/10.1002/0471749095]