• Title/Summary/Keyword: $Ge_1Se_1Te_2$

Search Result 32, Processing Time 0.032 seconds

Phase transition characteristics of As-doped $Ge_1Se_1Te_2$ film (As을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성연구)

  • Kim, Jae-Hoon;Kim, Hyun-Goo;Chung, Hong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1287-1288
    • /
    • 2008
  • In the past work, we showed that $Ge_1Se_1Te_2$ thin films provide a promising alternative for PRAM applications to overcome the problems of conventional $Ge_2Sb_2Te_5$ PRAM devices. However, $Ge_1Se_1Te_2$ thin films were unstable at SET and RESET process. Because of unstable state and its melting temperature, we alloyed As for 5wt%, 10wt% and 15wt% respectively. The phase transition temperature of $Ge_1Se_1Te_2$-only thin film is found to be 213$^{\circ}C$ while As 10wt% alloyed $Ge_1Se_1Te_2$ showed phase transition at 242$^{\circ}C$ with more stability.

  • PDF

Phase change properties of amorphous $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ chalcogenide thin films. (비정질 $Ge_1Se_1Te_2$$Ge_2Se_2Te_5$ 칼코게나이드박막의 상변화특성)

  • Chung, Hong-Bay;Cho, Won-Ju;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.118-119
    • /
    • 2006
  • In the present work, we investigate the basic physical and thermal properties and electrical resistance change due to phase change in chalcogenide-based $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ thin films. The phase transition from amorphous to crystalline states, and vice versa, of $Ge_1Se_1Te_2$ and $Ge_2Se_2Te_5$ thin films by applying electrical pulses have been studied. The reversible phase transition between the amorphous and crystalline states, which is accompanied by a considerable change in electrical resistivity, is exploited as means to store bits of information.

  • PDF

Phase Change Properties of Amorphous Ge1Se1Te2 and Ge2Sb2Te5 Chalcogenide Thin Films (비정질 Ge1Se1Te2 과 Ge2Sb2Te5 칼코게나이드 박막의 상변화특성)

  • Chung Hong-Bay;Cho Won-Ju;Ku Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.918-922
    • /
    • 2006
  • Chalcogenide Phase change memory has the high performance necessary for next-generation memory, because it is a nonvolatile memory with high programming speed, low programming voltage, high sensing margin, low power consumption and long cycle duration. To minimize the power consumption and the program voltage, the new composition material which shows the better phase-change properties than conventional $Ge_2Sb_2Te_5$ device has to be needed by accurate material engineering. In the present work, we investigate the basic thermal and the electrical properties due to phase-change compared with chalcogenide-based new composition $Ge_1Se_1Te_2$ material thin film and convetional $Ge_2Sb_2Te_5$ PRAM thin film. The fabricated new composition $Ge_1Se_1Te_2$ thin film exhibited a successful switching between an amorphous and a crystalline phase by applying a 950 ns -6.2 V set pulse and a 90 ns -8.2 V reset pulse. It is expected that the new composition $Ge_1Se_1Te_2$ material thin film device will be possible to applicable to overcome the Set/Reset problem for the nonvolatile memory device element of PRAM instead of conventional $Ge_2Sb_2Te_5$ device.

The electrical characteristics of GeTe thin films with various Se contents for switching deivces

  • Park, Goon-Ho;Son, Seo-Hee;Lim, Hyung-Kwang;Jeong, Doo-Seok;Lee, Su-Youn;Cheong, Byung-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.62-62
    • /
    • 2011
  • 현재 TFT의 주요 재료로 사용되는 비정질 실리콘은 전하 이동도가 매우 작아 고속 스위칭과 같은 고성능을 구현하기 어려우며 이동도 향상을 위해 고온 공정이 적용되야 하는 단점을 가지고 있다. 이러한 문제를 해결하기 위해 전하 이동도가 큰 박막재료를 바탕으로 박막 트랜지스터의 연구개발이 필요하며 이를 위한 해결책 중 새로운 스위칭 동작원리를 제공하며 고 이동도를 갖는 비정질 칼코지나이드 재료가 각광 받고 있다. 본 연구에서는 박막 스위칭 소자 응용을 위해 GeTe 재료를 기반으로 Se을 치환하여 GeSexTe1-x 박막을 제작한 후 소자의 전기적 특성을 평가하였다. GeTe 박막의 결정화 온도는 $187^{\circ}C$였으며 Se을 점진적으로 첨가한 GeSexTe1-x (X=0.2, 0.4, 0.6) 박막의 경우 각각 $213^{\circ}C$, $240^{\circ}C$, $287^{\circ}C$로 측정되었다. 이는 상대적으로 Ge과 Se의 결합에너지가 Ge과 Te의 결합에너지 보다 크기 때문에 Se 함량의 증가에 따라 비정질상의 안정성이 증가된 것으로 판단된다. 비교적 열적 안정성이 높은 3가지의 각각 다른 Se함량을 가진 Ge1.07 Se0.50 Te0.43, Ge1.07 Se0.68 Te0.26, Ge0.95 Se0.90 Te0.15의 소자를 제작하여 스위칭 특성을 분석하였다. GeTe의 경우 전형적인 메모리 스위칭 특성이 나타난 반면 위의 조성을 갖는 박막의 경우 반복적인 문턱 스위칭 특성을 보였다. 이는 Se이 첨가되면서 열적 안정성의 증가로 인해 스위칭이 일어난 후에도 비정질 상을 유지하기 때문이라 판단된다. 각각 제작된 소자에서 인가 전압의 증가와 펄스의 rising time 감소에 따라 더 빠른 스위칭 시간을 보였으며 Se함량이 감소함에 따라 스위칭 전압 또한 감소하는 것을 확인하였다. On 상태의 저항은 Se 함량에 따라 크게 차이가 없었지만 Off 상태의 저항은 Se 함량이 증가됨에 따라 증가되는 것을 확인하였다. 결과적으로 Se 함량에 따른 스위칭 특성의 최적화를 통해 고성능 스위칭 소자에 적용될 수 있을 것이라 판단된다.

  • PDF

Electrical Switching Characteristics of Ge1Se1Te2 Chalcogenide Thin Film for Phase Change Memory

  • Lee, Jae-Min;Yeo, Cheol-Ho;Shin, Kyung;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • The changes of the electrical conductivity in chalcogenide amorphous semiconductors, $Ge_{1}Se_{1}Te_{2}$, have been studied. A phase change random access memory (PRAM) device without an access transistor is successfully fabricated with the $Ge_{1}Se_{1}Te_{2}$-phase-change resistor, which has much higher electrical resistivity than $Ge_{2}Sb_{2}Te_{5}$ and its electric resistivity can be varied by the factor of $10^5$ times, relating with the degree of crystallization. 100 nm thick $Ge_{1}Se_{1}Te_{2}$ thin film was formed by vacuum deposition at $1.5{\times}10^{-5}$ Torr. The static mode switching (DC test) is tested for the $100\;{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device. In the first sweep, the amorphous $Ge_{1}Se_{1}Te_{2}$ thin film showed a high resistance state at low voltage region. However, when it reached to the threshold voltage, $V_{th}$, the electrical resistance of device was drastically reduced through the formation of an electrically conducting path. The pulsed mode switching of the $20{\mu}m-sized$ $Ge_{1}Se_{1}Te_{2}$ PRAM device showed that the reset of device was done with a 80 ns-8.6 V pulse and the set of device was done with a 200 ns-4.3 V pulse.

Optical Properties of $Ge_1Se_1Te_2$ Amorphous Chalcogenide Materials ($Ge_1Se_1Te_2$ 비정질 칼코게나이드 물질의 광학적 특성)

  • Choi, Hyuk;Kim, Hyun-Koo;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.83-84
    • /
    • 2006
  • For phase transition method, good recording sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, A retention time is very important part for phase transition. In our presentation wall, we chose Ge-Se-Te material to use a Se material which has good optical sensitivity than Sb. A Ge-Se-Te sample was fabricated and Irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light.

  • PDF

Reduced contact size in $Ge_1Se_1Te_2$ for phase change random access memory (PRAM에서 $Ge_1Se_1Te_2$와 전극의 접촉 면적을 줄이는 방법에 대한 효과)

  • Lim, Dong-Kyu;Kim, Jae-Hoon;Na, Min-Seok;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.154-155
    • /
    • 2007
  • PRAM(Phase-Change RAM) is a promising memory that can solve the problem of conventional memory and has the nearly ideal memory characteristics. We reviewed the issues for high density PRAM integration. Writing current reduction is the most urgent problem for high density PRAM realization. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material and presented the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode. A small-contact-area electrode is used primarily to supply current into and minimize heat loss from the chalcogenide. In this letter, we expect the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode to decrease writing current.

  • PDF

A Study on Characteristics of Phase Change in Chalcogenide Multilayered Thin Film (칼코게나이드 다층박막의 상변화 특성에 관한 연구)

  • Choi, Hyuk;Kim, Hyun-Gu;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1426-1427
    • /
    • 2006
  • Chalcogenide based phase-change memory has a high capability and potential for the next generation nonvolatile memory device. Fast writing speed, low writing voltage, high sensing margin, low power consume and long cycle of read/write repeatability are also good advantages of nonvolatile phase-change memory. We have been investigated the new material for the phase-change memory. Its composition is consists of chalcogenide $Ge_{1}Se_{1}Te_2$ material. We made this new material to solve problems of conventional phase-change memory which has disadvantage of high power consume and high writing voltage. In the present work, we are manufactured $Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}$ and $Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}$ sandwich triple layer structure devices are manufactured to investigate its electrical properties. Through the present work, we are willing to ensure a potential of substitutional method to overcome a crystallization problem on PRAM device.

  • PDF

Optical properties of Ag/$Ge_1Se_1Te_2$ material with secondary Ag layer adoption (두 번째 Ag 층을 적용한 Ag/$Ge_1Se_1Te_2$ 물질의 광학적 특성 연구)

  • Kim, Hyun-Koo;Han, Song-Lee;Kim, Jae-Hoon;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.191-192
    • /
    • 2008
  • For phase transition method, good record sensitivity, low heat radiation, fast crystallization and hi-resolution are essential. Also, a retention time is very important part for phase-transition. In our past papers, we chose composition of $Ge_1Se_1Te_2$ material to use a Se factor which has good optical sensitivity than conventional Sb. Ge-Se-Te and Ag/$Ge_1Se_1Te_2$ samples are fabricated and irradiated with He-Ne laser and DPSS laser to investigate a reversible phase change by light. Because of Ag ions, the Ag layer inserted sample showed better performance than conventional one. We should note that this novel one showed another possibility for phase-change random access memory.

  • PDF

Improved Switching Properties of Sb-doped Ge-Se-Te Material (Sb-doping에 의한 Ge-Se-Te의 개선된 스위칭 특성)

  • Chung, Hong-Bay;Nam, Ki-Hyun;Koo, Sang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1260_1261
    • /
    • 2009
  • A detailed investigation and structure of tested samples are clearly presented. As a reference, $Ge_1Se_1Te_2$/Sb only sample was also investigated. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this esperiment in order to solve that problem by doping-Sb.

  • PDF