• Title/Summary/Keyword: $F_0$-space

Search Result 590, Processing Time 0.023 seconds

ON THE MINUS PARTS OF CLASSICAL POINCARÉ SERIES

  • Choi, SoYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.281-285
    • /
    • 2018
  • Let $S_k(N)$ be the space of cusp forms of weight k for ${\Gamma}_0(N)$. We show that $S_k(N)$ is the direct sum of subspaces $S_k^+(N)$ and $S_k^-(N)$. Where $S_k^+(N)$ is the vector space of cusp forms of weight k for the group ${\Gamma}_0^+(N)$ generated by ${\Gamma}_0(N)$ and $W_N$ and $S_k^-(N)$ is the subspace consisting of elements f in $S_k(N)$ satisfying $f{\mid}_kW_N=-f$. We find generators spanning the space $S_k^-(N)$ from $Poincar{\acute{e}}$ series and give all linear relations among such generators.

ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES

  • LEE, HARIN;CHA, JAE YOUNG;CHO, MIN WOO;KWON, MYUNGJUN
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.319-328
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1) ||f(2x-y)+f(y-x)-f(x)|| $\leq$ ||${\rho}(f(x+y)-f(x)-f(y))$||, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ||f(x+y)-f(x)-f(y)|| $\leq$ ||${\rho}(f(2x-y)-f(y-x)-f(x))$||, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS F-SPACES

  • Shim, EunHwa
    • The Pure and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.243-251
    • /
    • 2017
  • In this paper, we solve the additive ${\rho}-functional$ equations (0.1) $f(x+y)+f(x-y)-2f(x)={\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x))$, and (0.2) $2f(\frac{x+y}{2})+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$, where ${\rho}$ is a fixed (complex) number with ${\rho}{\neq}1$, Using the direct method, we prove the Hyers-Ulam stability of the additive ${\rho}-functional$ equations (0.1) and (0.2) in ${\beta}-homogeneous$ (complex) F-spaces.

THE EXISTENCE OF SOLUTIONS OF LINEAR MULTIVARIABLE SYSTEMS IN DESCRIPTOR FROM FORM

  • AASARAAI, A.
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • The solutions of a homogeneous system in state space form $\dot{x}=Ax$ are to the form $x=e^{At}x_0$ and the solutions of an inhomogeneous system $\dot{x}=Ax(t)+f(t)$ are to the form $x=e^{At}x_0+{{\int}_0^t}\;e^{A(t-{\tau})}f({\tau})d{\tau}$. In this note we show that the solution of descriptor systems under some conditions exists, and is unique, moreover it is interesting to know the solutions of descriptor system are schematically like the solutions as in the state space form. Also we will give some algorithms to compute these solutions.

  • PDF

BOUNDARY-VALUED CONDITIONAL YEH-WIENER INTEGRALS AND A KAC-FEYNMAN WIENER INTEGRAL EQUATION

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.763-775
    • /
    • 1996
  • For $Q = [0,S] \times [0,T]$ let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous functions x(s,t) on Q such that x(0,t) = x(s,0) = 0 for every (s,t) in Q. Yeh [10] defined a Gaussian measure $m_y$ on C(Q) (later modified in [13]) such that as a stochastic process ${x(s,t), (s,t) \epsilon Q}$ has mean $E[x(s,t)] = \smallint_{C(Q)} x(s,t)m_y(dx) = 0$ and covariance $E[x(s,t)x(u,\upsilon)] = min{s,u} min{t,\upsilon}$. Let $C_\omega \equiv C[0,T]$ denote the standard Wiener space on [0,T] with Wiener measure $m_\omega$. Yeh [12] introduced the concept of the conditional Wiener integral of F given X, E(F$\mid$X), and for case X(x) = x(T) obtained some very useful results including a Kac-Feynman integral equation.

  • PDF

STABILITY OF AN n-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.397-409
    • /
    • 2018
  • In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation $$f\({\sum\limits_{i=1}^{n}}x_i\)+{\sum\limits_{1{\leq}i<j{\leq}n}}f(x_i-x_j)-n{\sum\limits_{i=1}^{n}f(x_i)=0$$ for integer values of n such that $n{\geq}2$, where f is a mapping from a vector space V to a Banach space Y.

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF

FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL EQUATIONS

  • Kim, Chang Il;Yun, Yong Sik
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.413-423
    • /
    • 2016
  • In this paper, we consider the functional equation f(x + 2y) - 3f(x + y) + 3f(x) - f(x - y) - 3f(y) + 3f(-y) = 0 and prove the generalized Hyers-Ulam stability for it when the target space is a fuzzy Banach space. The usual method to obtain the stability for mixed type functional equation is to split the cases according to whether the involving mappings are odd or even. In this paper, we show that the stability of a quadratic-cubic mapping can be obtained without distinguishing the two cases.