JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **31**, No. 4, November 2018 http://dx.doi.org/10.14403/jcms.2018.31.1.397

STABILITY OF AN *n*-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

SUN-SOOK JIN* AND YANG-HI LEE**

ABSTRACT. In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation

$$f\left(\sum_{i=1}^{n} x_{i}\right) + \sum_{1 \le i < j \le n} f(x_{i} - x_{j}) - n \sum_{i=1}^{n} f(x_{i}) = 0$$

for integer values of n such that $n \ge 2$, where f is a mapping from a vector space V to a Banach space Y.

1. Introduction

A stability problem of the functional equation was formulated by S. M. Ulam in 1940 [20]. In the following year, D. H. Hyers [5] gave a partial solution of Ulam's problem for the case of approximate additive functions. Subsequently, during the last seven decades, Hyers' theorem was generalized by several mathematicians worldwide [1, 2, 3, 4, 11, 12, 13, 14, 15, 18, 19].

Throughout this paper, assuming that $n \ge 2$ is an integer, V and W are real vector spaces, X is a normed space, and that Y is a Banach space, we consider the *n*-dimensional quadratic functional equation

(1.1)
$$f\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} f(x_i - x_j) - n \sum_{i=1}^{n} f(x_i) = 0$$

whose solutions are *quadratic mappings*.

Received May 03, 2018; Accepted September 19, 2018.

²⁰¹⁰ Mathematics Subject Classification: Primary 65J15; Secondary 65D15, 39B82.

Key words and phrases: stability of functional equation, n-dimensional quadratic functional equation, quadratic mapping.

Correspondence should be addressed to Yang-Hi Lee, yanghi2@hanmail.net.

This work was supported by Gongju National University of Education Grant 2017.

In this paper, we investigate a general stability problem for the n-dimensional quadratic functional equation (1.1).

2. Stability of an *n*-dimensional quadratic functional equation (1.1)

For convenience, we use the following abbreviations for a given mapping $f: V \to W$:

$$Df(x_1, x_2, \dots, x_n) := f\left(\sum_{i=1}^n x_i\right) + \sum_{1 \le i < j \le n} f(x_i - x_j) - n \sum_{i=1}^n f(x_i),$$
$$Qf(x, y) := f(x + y) + f(x - y) - 2f(x) - 2f(y),$$
$$\bar{x} := \underbrace{x, x, \dots, x}^{n-th}$$

for all $x, y, x_1, x_2, \ldots, x_n \in V$, where n is a fixed integer greater than 2.

If f is a solution of the functional equation Qf(x,y) = 0 for all $x, y \in V$, then f is called a quadratic mapping. The authors have shown several results about the stability problem of various kind of quadratic functional equations [6, 7, 8, 9, 10].

LEMMA 2.1. A mapping $f: V \to W$ is a solution of (1.1) if and only if f is a quadratic mapping.

Proof. Let
$$f: V \to W$$
 satisfy $Df(x_1, x_2, ..., x_n) = 0$. Since $f(0) = \frac{2Df(0,0,...,0)}{2-n^2-n} = 0$ and $f(-x) = Df(0,x,0,...,0) + f(x) = f(x)$, we get

$$Qf(x,y) = Df(x,y,0,\ldots,0) = 0$$

for all $x, y \in V$, i.e., f is a quadratic mapping.

Conversely, assume that f is a quadratic mapping. We apply induction on $j \in \{2, \ldots, n\}$ to prove $Df(x_1, x_2, \ldots, x_n) = 0$ for all $x_1, x_2, \ldots, x_n \in V$. For j = 2, we have

$$Df(x_1, x_2, 0, \dots, 0) = Qf(x_1, x_2) = 0$$

for all $x_1, x_2 \in V$. If n > 2 and $Df(x_1, x_2, \dots, x_j, 0, \dots, 0) = 0$ for some integer j $(2 \le j < n)$ and for all $x_1, x_2, \dots, x_j \in V$, then routine

calculation yields

$$Df(x_1, x_2, \dots, x_{j+1}, 0, \dots, 0)$$

$$= -\frac{1}{2}Qf(x_1 + \dots + x_{j+1}, x_{j+1} - x_j)$$

$$+ \frac{1}{2}Df(x_1, x_2, \dots, x_{j-1}, 2x_j, 0, \dots, 0)$$

$$+ \frac{1}{2}Df(x_1, x_2, \dots, x_{j-1}, 2x_{j+1}, 0, \dots, 0) - \frac{1}{2}\sum_{i=1}^{j-1}Qf(x_i - x_j, x_j)$$

$$- \frac{1}{2}\sum_{i=1}^{j-1}Qf(x_i - x_{j+1}, x_{j+1}) + \frac{j}{2}Qf(x_j, x_j) + \frac{j}{2}Qf(x_{j+1}, x_{j+1})$$

$$= 0$$

for all $x_1, x_2, \ldots, x_j, x_{j+1} \in V$. Hence, we get f is a solution of (1.1). \Box

In the following theorems, we will investigate the generalized Hyers-Ulam stability problems of the functional equation (1.1).

THEOREM 2.2. Let s = 1, -1 and let $\varphi : V^n \to [0, \infty)$ be a function satisfying the conditions:

(2.1)
$$\sum_{j=0}^{\infty} n^{-2sj} \varphi(n^{sj} x_1, n^{sj} x_2, \cdots, n^{sj} x_n) < \infty$$

for all $x_1, x_2, \dots, x_n \in V$. Suppose $f: V \to Y$ is a mapping such that

(2.2)
$$||Df(x_1, x_2, \dots, x_n)|| \le \varphi(x_1, x_2, \dots, x_n)$$

for all $x_1, x_2, \ldots, x_n \in V$ with f(0) = 0. Then there exists a quadratic mapping $F: V \to Y$ such that

(2.3)
$$||f(x) - F(x)|| \le \sum_{i=0}^{\infty} n^{2\tau_{-s,i}} \varphi(\overline{n^{\tau_{s,i}}x})$$

for all $x \in V$, where $\tau_{s,m}$ are the integers defined by

$$\tau_{s,m} = s\left(m + \frac{1}{2}\right) - \frac{1}{2}$$

for $s \in \{-1, 1\}, m \in \mathbb{N} \cup \{0\}.$

Proof. It follows from (2.2) that

$$\|n^{-2sm}f(n^{sm}x) - n^{-2s(m+m')}f(n^{s(m+m')}x)\|$$
(2.4)
$$\leq \sum_{i=m}^{m+m'-1} \left\| -n^{2\tau_{-s,i}}Df(\overline{n^{\tau_{s,i}}x})s\right\|$$

$$\leq \sum_{i=m}^{m+m'-1} n^{2\tau_{-s,i}}\varphi(\overline{n^{\tau_{s,i}}x})$$

for all $x_1, x_2, ..., x_n \in V$ and $m + m' > m \ge 0$.

By (2.1) and (2.4), we get the sequence $\{n^{-2sm}f(n^{sm}x)\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete, the sequence $\{n^{-2sm}f(n^{sm}x)\}$ converges in Y. Hence, we can define a mapping $F: V \to Y$ by

$$F(x) := \lim_{m \to \infty} n^{-2sm} f(n^{sm} x)$$

for all $x \in V$. Moreover, by putting m = 0 and letting $m' \to \infty$ in (2.4), we get (2.3). From the definition of F, we easily have

$$DF(x_1, x_2, \dots, x_n) = \lim_{i \to \infty} n^{-2si} Df(n^{si}x_1, \dots, n^{si}x_n) = 0$$

for all $x_1, x_2, \ldots, x_n \in V$, which implies that F is a quadratic mapping by Lemma 2.1.

Now let $F': V \to Y$ be another quadratic mapping satisfying the inequality (2.3). Because F' is a quadratic mapping, we can easily show that $F'(x) = n^{-2sm}F'(n^{sm}x)$ for all $x \in V$. Using this equality and (2.3), we obtain

$$\begin{aligned} \|F'(x) - n^{-2sm} f(n^{sm} x)\| &= \|n^{-2sm} F'(n^{sm} x) - n^{-2sm} f(n^{sm} x)\| \\ &\leq \sum_{j=m}^{\infty} n^{2\tau_{-s,i}} \varphi(\overline{n^{\tau_{s,i}} x}) \\ &\to 0, \text{ as } m \to \infty, \end{aligned}$$

which implies that $F'(x) = \lim_{m \to \infty} n^{-2sm} f(n^{sm}x) = F(x)$ for all $x \in V$. This proves the uniqueness of F.

Put $\varphi(x_1, x_2, \dots, x_n) := \theta(||x_1||^p + ||x_2||^p + \dots + ||x_n||^p)$ in Theorem 2.2. Then we prove the following corollary.

COROLLARY 2.3. Let $p \neq 2$ be a nonnegative real number. Suppose $f: X \to Y$ is a mapping such that

(2.5)
$$||Df(x_1, x_2, \dots, x_n)|| \le \theta (||x_1||^p + ||x_2||^p + \dots + ||x_n||^p)$$

401

for all $x_1, x_2, \ldots, x_n \in X$ and for some constant $\theta \ge 0$. Then there exists a unique quadratic mapping F such that

$$||f(x) - F(x)|| \le \frac{n\theta ||x||^p}{|n^p - n^2|}$$

for all $x \in X$.

In particular, we prove the stability of the functional equation (1.1) for the case n = 3. In other word, we prove the stability of the functional equation

f(x+y+z) + f(x-y) + f(y-z) + f(x-z) - 3f(x) - 3f(y) - 3f(z) = 0 for all $x, y, z \in V$.

LEMMA 2.4. If $f: V \to W$ is a mapping such that

$$Df(x, y, z) = 0$$

for all $x, y, z \in V \setminus \{0\}$, then

$$Df(x, y, z) = 0$$

for all $x, y, z \in V$.

Proof. Since

$$f(x) = \frac{Df(x, -x, -x) - Df(x, x, -x)}{2} + f(-x) = f(-x)$$

for all $x \in V \setminus \{0\}$, we have

$$f(0) = \frac{4Df(x, x, x) - 2Df(2x, -x, -x) - 3Df(x, x, -x)}{5} = 0$$

and

$$f(2x) = \frac{Df(x, x, -x)}{2} + 4f(x) = 4f(x).$$

So we easily know that Df(x, y, 0) = Df(x, y, -y) = 0, Df(x, 0, z) = Df(x, z, -z) = 0, Df(0, y, z) = Df(y, z, -z) = 0, Df(x, 0, 0) = 0, Df(0, 0, z) = 0, Df(0, y, 0) = 0, Df(0, 0, 0) = 0 for all $x, y, z \in V \setminus \{0\}$ as we desired.

By Lemma 2.4 and Theorem 2.2, we can easily obtain the following theorem.

THEOREM 2.5. Let s = 1, -1 and let $\varphi : (V \setminus \{0\})^3 \to [0, \infty)$ be a function satisfying the condition:

$$\sum_{j=0}^{\infty}3^{-2sj}\varphi(3^{sj}x,3^{sj}y2,3^{sj}z)<\infty$$

for all $x, y, z \in V \setminus \{0\}$. Suppose $f : V \to Y$ is a mapping such that

$$\|Df(x, y, z)\| \le \varphi(x, y, z)$$

for all $x, y, z \in V \setminus \{0\}$ with f(0) = 0. Then there exists a unique quadratic mapping $F: V \to Y$ such that

$$||f(x) - F(x)|| \le \sum_{i=0}^{\infty} 3^{2\tau_{-s,i}} \varphi(\overline{3^{\tau_{s,i}}x})$$

for all $x \in V \setminus \{0\}$.

COROLLARY 2.6. Let p be a real number such that p < 0. If $f : X \to Y$ is a mapping such that

(2.6)
$$||Df(x, y, z)|| \le \theta (||x||^p + ||y||^p + ||z||^p)$$

for all $x, y, z \in X \setminus \{0\}$ and for some constant $\theta \ge 0$, then f is itself a quadratic mapping.

Proof. Put $\varphi(x, y, z) := \theta(||x||^p + ||y||^p + ||z||^p)$ for all $x, y, z \in X \setminus \{0\}$ in Theorem 2.5. Choose $x \in X \setminus \{0\}$. Then

$$\begin{split} \|10f(0)\| &= \|8Df(nx, nx, nx) - 4Df(2nx, -nx, -nx) \\ &- 27Df(nx, nx, -nx) + 21Df(nx, -nx, -nx)\| \\ &\leq 8\|Df(nx, nx, nx)\| + 4\|Df(2nx, -nx, -nx)\| \\ &+ 27\|Df(nx, nx, -nx)\| + 21\|Df(nx, -nx, -nx)\| \\ &\leq (176 + 4 \cdot 2^p)n^p\|x\|^p \\ &\to 0, \text{ as } n \to \infty. \end{split}$$

which means that f(0) = 0. On the other hand, there exists a unique quadratic mapping F such that

(2.7)
$$||f(x) - F(x)|| \le \frac{3\theta ||x||^p}{9 - 3^p}$$

for all $x \in X \setminus \{0\}$ by Theorem 2.5. Since 2f(x) = Df((k+1)x, kx, kx) - f((3k+1)x) + 3f((k+1)x) + 6f(kx) and DF((k+1)x, kx, kx) = 0 for all $x \in X \setminus \{0\}$, it follows from (2.7) that

$$2\|f(x) - F(x)\| \\\leq \|Df((k+1)x, kx, kx)\| + \|(F - f)((3k+1)x)\| \\+ 3\|(F - f)((k+1)x)\| + 6\|(F - f)(-kx)\| \\\leq \left((k+1)^p + 2k^p + \frac{3((3k+1)^p + 3(k+1)^p + 6k^p)}{9 - 3^p}\right)\theta\|x\|^p \\\to 0, \text{ as } k \to \infty,$$

i.e, f(x) = F(x) for all $x \in X \setminus \{0\}$. Because f(0) = 0 = F(0), we get the desired result.

3. Stability of the set-valued functional equation (1.1)

In this section, we present some related concepts and results which are mainly derived from [16, 17].

From now on, let V be a real vector space and Y a Banach space. The family of all nonempty closed convex subsets of Y will be denoted by cc(Y).

Let A, B be nonempty subsets of a real vector space V and let λ and μ be real numbers. If we define

$$A + B := \{ x \in V : x = a + b, \quad a \in V, \ b \in B \},$$
$$\lambda A := \{ x \in V : x = \lambda a, \quad a \in V \},$$

then

$$\lambda(A+B) = \lambda A + \lambda B$$
$$(\lambda + \mu)A \subseteq \lambda A + \mu A.$$

Moreover, if A is a convex set and $\lambda \mu \geq 0$, then we have

$$(\lambda + \mu)A = \lambda A + \mu A.$$

In this paper, we get the stability result of the set-valued functional equation

(3.1)
$$f\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} f(x_i - x_j) \subseteq n \sum_{i=1}^{n} f(x_i)$$

for all $x, x_1, \ldots, x_n \in V$.

THEOREM 3.1. Let cc(Y) are the family of all nonempty closed convex subsets of Y. If $f: V \to cc(Y)$ is a set-valued mapping satisfying the inclusion (3.1) and

(3.2)
$$\lim_{m \to \infty} \frac{diam(f(n^m x))}{n^{2m}} = 0$$

for all $x, x_1, \ldots, x_n \in V$, then there exists a unique quadratic mapping $g: V \to Y$ such that $g(x) \in f(x) - \frac{n}{2n+2}f(0)$ for all $x \in V$.

Sun-Sook Jin and Yang-Hi Lee

Proof. Since $f(0) \in cc(Y)$, f(0) has at least an element, say $p \in f(0)$. Putting $x_k = 0$ for $k \in \{1, 2, ..., n\}$ in (3.1), we have

$$\frac{n(n-1)+2}{2}p \in f(0) + \frac{n(n-1)}{2}f(0) \subseteq n^2 f(0),$$

which means that $\frac{n(n-1)+2}{2n^2}p \in f(0)$. So $\left(\frac{n(n-1)+2}{2n^2}\right)^m p \in f(0)$ for all $m \in \mathbb{N}$ and $0 = \lim_{m \to \infty} \left(\frac{n(n-1)+2}{2n^2}\right)^m p \in f(0)$. Putting $x_k = x$ for $k \in \{1, 2, \ldots, n\}$ in (3.1), we have

(3.3)
$$f(nx) = f(nx) + \frac{n(n-1)}{2} \{0\}$$
$$\subseteq f(nx) + \frac{n(n-1)}{2} f(0) \subseteq n^2 f(x),$$

i.e.,

(3.4)
$$f(nx) \subseteq n^2 f(x).$$

Replacing x by $n^{m-1}x$ and dividing both sides by n^{2m} in (3.4), then we obtain

 $n^{-2m}f(n^mx) \subseteq n^{-2m+2}f(n^{m-1}x)$

for all $x \in V$. Denoting $F_m(x) := n^{-2m} f(n^m x)$ for all $x \in V$ and $m \in \mathbb{N} \cup \{0\}$, it results that $\{F_m(x)\}_m$ is a decreasing sequence of closed subsets of the Banach space Y. By (3.2), we get $\lim_{n\to\infty} diam(F_m(x)) = diam(n^{-2m}(f(n^m x))) = 0$ for all $x \in V$. For the sequence $\{F_m(x)\}_{m\geq 0}$, the intersection $\bigcap_{m\geq 0} F_m(x)$ has a single element and we denote this single element by g(x) for all $x \in V$. Thus we obtain a mapping $g: V \to Y$ which is a selection of f because $g(x) \in F_0(x) = f(x)$ for all $x \in V$.

Now we show that g is quadratic. From the definition of $F_m(x)$, we know that

$$F_m\left(\sum_{i=1}^n x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j) = n^{-2m} f\left(\sum_{i=1}^n n^m x_i\right)$$
$$+ \sum_{1 \le i < j \le n} n^{-2m} f(n^m x_i - n^m x_j)$$
$$\subseteq n \sum_{i=1}^n n^{-2m} f(n^m x_i)$$
$$= n \sum_{i=1}^n F_m(x_i)$$

for all $x_1, \ldots, x_n \in V$. With the definition of g and the above property, we have

$$g\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} g(x_i - x_j) \quad \in \quad F_m\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j)$$
$$\subseteq \quad n \sum_{i=1}^{n} F_m(x_i)$$

and

$$n\sum_{i=1}^{n}g(x_i)\in n\sum_{i=1}^{n}F_m(x_i)$$

for all $m \ge 0$ and $x_1, \cdots, x_n \in V$. Since

$$n \sum_{i=1}^{n} F_{m+1}(x_i) \subseteq n \sum_{i=1}^{n} F_m(x_i)$$

and

$$diam\left(n\sum_{i=1}^{n}F_m(x_i)\right) \leq n\sum_{i=1}^{n}diam\left(F_m(x_i)\right) \to \ 0 \ \text{as} \ m \to \infty,$$

for any $x_1, \ldots, x_n \in V$, it results that $\{n \sum_{i=1}^n F_m(x_i)\}_{\geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. For this sequence, the intersection $\bigcap_{m>0} (n \sum_{i=1}^n F_m(x_i))$ has a single element and so we have

$$g\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} g(x_i - x_j) = n \sum_{i=1}^{n} g(x_i)$$

for all $x_1, \ldots, x_n \in V$. Therefore, we conclude that there exists a quadratic mapping $g: V \to Y$ such that $g(x) \in f(x)$ for all $x \in V$.

Next, we will finalize the proof by proving the uniqueness of g for the case $g(x) \in f(x)$. Suppose that $g': V \to Y$ is another quadratic mapping such that $g'(x) \in f(x)$ for all $x \in V$. We have

$$g(x) = \frac{g(n^m x)}{n^{2m}} \in \frac{f(n^m x)}{n^{2m}} \text{ and} g'(x) = \frac{g'(n^m x)}{n^{2m}} \in \frac{f(n^m x)}{n^{2m}}$$

for all $m \in \mathbb{N} \cup \{0\}$. Since the intersection $\bigcap_{m \ge 0} \frac{f(n^m x)}{n^{2m}}$ has a single element, we have g(x) = g'(x) for all $x \in V$, as desired. \Box

The following corollary is a refined stability result of Theorem 3.1 in [17] if we take n = 2.

COROLLARY 3.2. If $f: V \to cc(Y)$ is a set-valued mapping satisfying the conditions

$$f(x+y) + f(x-y) \subseteq 2f(x) + 2f(y)$$

and

$$\sup\{diam(f(x)): x \in V\} < +\infty$$

for all $x, y \in V$, then there exists a unique quadratic mapping $g: V \to Y$ such that $g(x) \in f(x)$ for all $x \in V$.

Proof. Since $\sup\{diam(f(x)) : x \in V\} < +\infty$, we get

$$\lim_{m\to\infty} diam\left(\frac{f(2^mx)}{4^m}\right) = 0$$

for all $x \in V$. By Theorem 3.1, we complete the proof, where $g(x) \in f(x)$.

THEOREM 3.3. If $f: V \to cc(Y)$ is a set-valued mapping satisfying

(3.5)
$$n\sum_{i=1}^{n} f(x_i) \subseteq f\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} f(x_i - x_j)$$

and

(3.6)
$$\lim_{m \to \infty} n^{2m} diam \left(f\left(\frac{x}{n^m}\right) \right) = 0$$

for all $x, x_1, \ldots, x_n \in V$, then there exists a unique quadratic mapping $g: V \to Y$ such that $g(x) \in f(x) + (-1)f(0)$ for all $x \in V$.

Proof. Since n > 1 and $n^2 f(0) \subset \frac{n(n-1)+2}{2}f(0)$, we easily get f(0) is a singleton set and $f(0) = \{0\}$. Taking $x_i = x$ for all i = 1, 2, ..., n in (3.5), we obtain

(3.7)
$$n^2 f(x) \subseteq f(nx) + \frac{n(n-1)+2}{2} \{0\} = f(nx)$$

for all $x \in V$. Denoting $F_m(x) = n^{2m} f\left(\frac{x}{n^m}\right), x \in V, m \in \mathbb{N} \cup \{0\}$, we obtain that $\{F_m(x)\}_{m\geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. We have also

$$diam(F_m(x)) = diam\left(n^{2m}f\left(\frac{x}{n^m}\right)\right) = n^{2m}diam\left(f\left(\frac{x}{n^m}\right)\right)$$

By (3.6), we get $\lim_{m\to\infty} diam(F_m(x)) = 0$ for all $x \in V$.

For the sequence $\{F_m(x)\}_{m\geq 0}$, we obtain that the intersection $\bigcap_{m\geq 0} F_m(x)$ has a single element and we denote this element by g(x) for all

 $x \in V$. Thus we obtain a mapping $g: V \to Y$ such that $g(x) \in F_0(x) = f(x)$ for all $x \in V$.

Now we show that g is quadratic. From the definition of $F_m(x)$, we know that

$$n\sum_{i=1}^{n} F_m(x_i) = n\sum_{i=1}^{n} n^{2m} f\left(\frac{x_i}{n^m}\right)$$
$$\subseteq n^{2m} f\left(\sum_{i=1}^{n} \frac{x_i}{n^m}\right) + \sum_{1 \le i < j \le n} n^{2m} f\left(\frac{x_i - x_j}{n^m}\right)$$
$$= F_m\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j)$$

for all $x_1, \ldots, x_n \in V$. With the definition of g and the above property, we have

$$n\sum_{i=1}^{n} g(x_i) \in n\sum_{i=1}^{n} F_m(x_i) \subseteq F_m\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j)$$

and

$$g\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} g(x_i - x_j) \in F_m\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j)$$

for all $m \ge 0$ and $x_1, \cdots, x_n \in V$. Since

$$F_{m+1}\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} F_{m+1}(x_i - x_j)$$
$$\subseteq F_m\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j)$$

and

$$diam\left(F_m\left(\sum_{i=1}^n x_i\right) + \sum_{1 \le i < j \le n} F_m(x_i - x_j)\right)$$
$$\leq diam\left(F_m\left(\sum_{i=1}^n x_i\right)\right) + \sum_{1 \le i < j \le n} diam\left(F_m(x_i - x_j)\right) \to 0 \text{ as } m \to \infty,$$

for any $x_1, \ldots, x_n \in V$, it results that $\{F_m(\sum_{i=1}^n x_i) + \sum_{1 \leq i < j \leq n} F_m(x_i - x_j)\}_{m \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y.

For this sequence, the intersection $\bigcap_{m\geq 0} (F_m(\sum_{i=1}^n x_i) + \sum_{1\leq i< j\leq n} F_m(x_i - x_j))$ has a single element and so we have

$$n\sum_{i=1}^{n} g(x_i) = g\left(\sum_{i=1}^{n} x_i\right) + \sum_{1 \le i < j \le n} g(x_i - x_j)$$

for all $x_1, \ldots, x_n \in V$.

Therefore, we conclude that there exists a quadratic mapping $g: V \to Y$ such that $g(x) \in f(x)$ for all $x \in V$.

Next, we will finalize the proof by proving the uniqueness of g for the case $g(x) \in f(x)$. Suppose that $g': V \to Y$ is another quadratic mapping such that $g'(x) \in f(x)$ for all $x \in V$. We have

$$g(x) = n^{2m}g\left(\frac{x}{n^m}\right) \in n^{2m}f\left(\frac{x}{n^m}\right),$$
$$g'(x) = n^{2m}g'\left(\frac{x}{n^m}\right) \in n^{2m}f\left(\frac{x}{n^m}\right)$$

for all $m \in \mathbb{N} \cup \{0\}$. Since

$$diam\left(n^{2m}f\left(\frac{x}{n^m}\right)\right) \to 0 \text{ as } m \to \infty,$$

the intersection $\bigcap_{m\geq 0} n^{2m} f\left(\frac{x}{n^m}\right)$ has a single element and so we have g(x) = g'(x) for all $x \in V$, as desired.

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [2] I.-S. Chang, E.-H. Lee, and H.-M. Kim, On Hyers-Ulam-Rassias stability of a quadratic functional equation, Math. Inequal. Appl. 6 (2003), 87-95.
- [3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hamb. 62 (1992) 59-64.
- [4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
- [6] S.-S. Jin and Y.-H. Lee, Generalized Hyers-Ulam stability of a 3-dimensional quadratic functional equation, Int. J. Math. Anal. (Ruse), 10 (2016), 719-728.
- [7] S.-S. Jin and Y.-H. Lee, Generalized Hyers-Ulam stability of a 3-dimensional quadratic functional equation in modular spaces, Int. J. Math. Anal. (Ruse), 10 (2016), 953-963.
- [8] S.-S. Jin and Y.-H. Lee, Hyers-Ulam-Rassias stability of a functional equation related to general quadratic mappings, Honam Math. J. 39 (2017), 417-430.
- [9] S.-S. Jin and Y.-H. Lee, Stability of a functional equation related to quadratic mappings, Int. J. Math. Anal. (Ruse), 11 (2017), 55-68.

- [10] S.-S. Jin and Y.-H. Lee, Stability of two generalized 3-dimensional quadratic functional equations, J. Chungcheong Math. Soc. 31 (2018), 29-42.
- [11] K.-W. Jun and Y.-H. Lee, A Generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations II, Kyungpook Math. J. 47 (2007), 91-103.
- [12] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137.
- [13] G.-H. Kim, On the stability of functional equations with square-symmetric operation, Math. Inequal. Appl. 4 (2001), 257-266.
- [14] Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403.
- [15] Y.-H. Lee and K.-W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
- [16] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Nr. 559 (1989).
- [17] C. Park, D. O'Regan, and R. Saadati, Stability of some set-valued functional equations, Applied Mathematics Letters, 24 (2011), 1910-1914.
- [18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [19] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
- [20] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.

*

Department of Mathematics Education Gongju National University of Education Gongju 32588, Republic of Korea *E-mail*: ssjin@ gjue.ac.kr

**

Department of Mathematics Education Gongju National University of Education Gongju 32588, Republic of Korea *E-mail*: yanghi2@hanmail.net