STABILITY OF AN n-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

Sun-Sook Jin* and Yang-Hi Lee**

Abstract. In this paper, we investigate the generalized HyersUlam stability of the functional equation

$$
f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right)-n \sum_{i=1}^{n} f\left(x_{i}\right)=0
$$

for integer values of n such that $n \geq 2$, where f is a mapping from a vector space V to a Banach space Y.

1. Introduction

A stability problem of the functional equation was formulated by S . M. Ulam in 1940 [20]. In the following year, D. H. Hyers [5] gave a partial solution of Ulam's problem for the case of approximate additive functions. Subsequently, during the last seven decades, Hyers' theorem was generalized by several mathematicians worldwide $[1,2,3,4,11,12$, $13,14,15,18,19]$.

Throughout this paper, assuming that $n \geq 2$ is an integer, V and W are real vector spaces, X is a normed space, and that Y is a Banach space, we consider the n-dimensional quadratic functional equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right)-n \sum_{i=1}^{n} f\left(x_{i}\right)=0 \tag{1.1}
\end{equation*}
$$

whose solutions are quadratic mappings.

[^0]In this paper, we investigate a general stability problem for the n dimensional quadratic functional equation (1.1).

2. Stability of an n-dimensional quadratic functional equation (1.1)

For convenience, we use the following abbreviations for a given mapping $f: V \rightarrow W$:

$$
\begin{aligned}
D f\left(x_{1}, x_{2}, \ldots, x_{n}\right) & :=f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right)-n \sum_{i=1}^{n} f\left(x_{i}\right), \\
Q f(x, y) & :=f(x+y)+f(x-y)-2 f(x)-2 f(y), \\
\bar{x} & :=\overparen{x, x, \ldots, x}
\end{aligned}
$$

for all $x, y, x_{1}, x_{2}, \ldots, x_{n} \in V$, where n is a fixed integer greater than 2 .
If f is a solution of the functional equation $Q f(x, y)=0$ for all $x, y \in V$, then f is called a quadratic mapping. The authors have shown several results about the stability problem of various kind of quadratic functional equations $[6,7,8,9,10]$.

Lemma 2.1. A mapping $f: V \rightarrow W$ is a solution of (1.1) if and only if f is a quadratic mapping.

Proof. Let $f: V \rightarrow W$ satisfy $\operatorname{Df}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$. Since $f(0)=$ $\frac{2 D f(0,0, \ldots, 0)}{2-n^{2}-n}=0$ and $f(-x)=D f(0, x, 0, \ldots, 0)+f(x)=f(x)$, we get

$$
Q f(x, y)=D f(x, y, 0, \ldots, 0)=0
$$

for all $x, y \in V$, i.e., f is a quadratic mapping.
Conversely, assume that f is a quadratic mapping. We apply induction on $j \in\{2, \ldots, n\}$ to prove $D f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{1}, x_{2}, \ldots, x_{n} \in$ V. For $j=2$, we have

$$
D f\left(x_{1}, x_{2}, 0, \ldots, 0\right)=Q f\left(x_{1}, x_{2}\right)=0
$$

for all $x_{1}, x_{2} \in V$. If $n>2$ and $D f\left(x_{1}, x_{2}, \ldots, x_{j}, 0, \ldots, 0\right)=0$ for some integer $j(2 \leq j<n)$ and for all $x_{1}, x_{2}, \ldots, x_{j} \in V$, then routine
calculation yields

$$
\begin{aligned}
& D f\left(x_{1}, x_{2}, \ldots, x_{j+1}, 0, \ldots, 0\right) \\
& =- \\
& \quad \frac{1}{2} Q f\left(x_{1}+\cdots+x_{j+1}, x_{j+1}-x_{j}\right) \\
& \quad+\frac{1}{2} D f\left(x_{1}, x_{2}, \ldots, x_{j-1}, 2 x_{j}, 0, \ldots, 0\right) \\
& \quad+\frac{1}{2} D f\left(x_{1}, x_{2}, \ldots, x_{j-1}, 2 x_{j+1}, 0, \ldots, 0\right)-\frac{1}{2} \sum_{i=1}^{j-1} Q f\left(x_{i}-x_{j}, x_{j}\right) \\
& \quad-\frac{1}{2} \sum_{i=1}^{j-1} Q f\left(x_{i}-x_{j+1}, x_{j+1}\right)+\frac{j}{2} Q f\left(x_{j}, x_{j}\right)+\frac{j}{2} Q f\left(x_{j+1}, x_{j+1}\right) \\
& =0
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{j}, x_{j+1} \in V$. Hence, we get f is a solution of (1.1).
In the following theorems, we will investigate the generalized HyersUlam stability problems of the functional equation (1.1).

Theorem 2.2. Let $s=1,-1$ and let $\varphi: V^{n} \rightarrow[0, \infty)$ be a function satisfying the conditions:

$$
\begin{equation*}
\sum_{j=0}^{\infty} n^{-2 s j} \varphi\left(n^{s j} x_{1}, n^{s j} x_{2}, \cdots, n^{s j} x_{n}\right)<\infty \tag{2.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in V$. Suppose $f: V \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|D f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{2.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in V$ with $f(0)=0$. Then there exists a quadratic mapping $F: V \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \sum_{i=0}^{\infty} n^{2 \tau_{-s, i}} \varphi\left(\overline{n^{\tau_{s, i}} x}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in V$, where $\tau_{s, m}$ are the integers defined by

$$
\tau_{s, m}=s\left(m+\frac{1}{2}\right)-\frac{1}{2}
$$

for $s \in\{-1,1\}, m \in \mathbb{N} \cup\{0\}$.

Proof. It follows from (2.2) that

$$
\left\|n^{-2 s m} f\left(n^{s m} x\right)-n^{-2 s\left(m+m^{\prime}\right)} f\left(n^{s\left(m+m^{\prime}\right)} x\right)\right\|
$$

$$
\begin{align*}
& \leq \sum_{i=m}^{m+m^{\prime}-1}\left\|-n^{2 \tau_{-s, i}} D f\left(\overline{n^{\tau_{s, i}} x}\right) s\right\| \tag{2.4}\\
& \leq \sum_{i=m}^{m+m^{\prime}-1} n^{2 \tau_{-s, i}} \varphi\left(\overline{n^{\tau_{s, i}} x}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in V$ and $m+m^{\prime}>m \geq 0$.
By (2.1) and (2.4), we get the sequence $\left\{n^{-2 s m} f\left(n^{s m} x\right)\right\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete, the sequence $\left\{n^{-2 s m} f\left(n^{s m} x\right)\right\}$ converges in Y. Hence, we can define a mapping $F: V \rightarrow Y$ by

$$
F(x):=\lim _{m \rightarrow \infty} n^{-2 s m} f\left(n^{s m} x\right)
$$

for all $x \in V$. Moreover, by putting $m=0$ and letting $m^{\prime} \rightarrow \infty$ in (2.4), we get (2.3). From the definition of F, we easily have

$$
D F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\lim _{i \rightarrow \infty} n^{-2 s i} D f\left(n^{s i} x_{1}, \ldots, n^{s i} x_{n}\right)=0
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in V$, which implies that F is a quadratic mapping by Lemma 2.1.

Now let $F^{\prime}: V \rightarrow Y$ be another quadratic mapping satisfying the inequality (2.3). Because F^{\prime} is a quadratic mapping, we can easily show that $F^{\prime}(x)=n^{-2 s m} F^{\prime}\left(n^{s m} x\right)$ for all $x \in V$. Using this equality and (2.3), we obtain

$$
\begin{aligned}
\left\|F^{\prime}(x)-n^{-2 s m} f\left(n^{s m} x\right)\right\| & =\left\|n^{-2 s m} F^{\prime}\left(n^{s m} x\right)-n^{-2 s m} f\left(n^{s m} x\right)\right\| \\
& \leq \sum_{j=m}^{\infty} n^{2 \tau_{-s, i}} \varphi\left(\overline{n^{\tau_{s, i}} x}\right) \\
& \rightarrow 0, \text { as } m \rightarrow \infty
\end{aligned}
$$

which implies that $F^{\prime}(x)=\lim _{m \rightarrow \infty} n^{-2 s m} f\left(n^{s m} x\right)=F(x)$ for all $x \in$ V. This proves the uniqueness of F.

Put $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\theta\left(\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}+\cdots+\left\|x_{n}\right\|^{p}\right)$ in Theorem 2.2. Then we prove the following corollary.

Corollary 2.3. Let $p \neq 2$ be a nonnegative real number. Suppose $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|D f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq \theta\left(\left\|x_{1}\right\|^{p}+\left\|x_{2}\right\|^{p}+\cdots+\left\|x_{n}\right\|^{p}\right) \tag{2.5}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and for some constant $\theta \geq 0$. Then there exists a unique quadratic mapping F such that

$$
\|f(x)-F(x)\| \leq \frac{n \theta\|x\|^{p}}{\left|n^{p}-n^{2}\right|}
$$

for all $x \in X$.
In particular, we prove the stability of the functional equation (1.1) for the case $n=3$. In other word, we prove the stability of the functional equation
$f(x+y+z)+f(x-y)+f(y-z)+f(x-z)-3 f(x)-3 f(y)-3 f(z)=0$ for all $x, y, z \in V$.

Lemma 2.4. If $f: V \rightarrow W$ is a mapping such that

$$
D f(x, y, z)=0
$$

for all $x, y, z \in V \backslash\{0\}$, then

$$
D f(x, y, z)=0
$$

for all $x, y, z \in V$.
Proof. Since

$$
f(x)=\frac{D f(x,-x,-x)-D f(x, x,-x)}{2}+f(-x)=f(-x)
$$

for all $x \in V \backslash\{0\}$, we have

$$
f(0)=\frac{4 D f(x, x, x)-2 D f(2 x,-x,-x)-3 D f(x, x,-x)}{5}=0
$$

and

$$
f(2 x)=\frac{D f(x, x,-x)}{2}+4 f(x)=4 f(x) .
$$

So we easily know that $D f(x, y, 0)=D f(x, y,-y)=0, D f(x, 0, z)=$ $D f(x, z,-z)=0, D f(0, y, z)=D f(y, z,-z)=0, D f(x, 0,0)=0$, $D f(0,0, z)=0, D f(0, y, 0)=0, D f(0,0,0)=0$ for all $x, y, z \in V \backslash\{0\}$ as we desired.

By Lemma 2.4 and Theorem 2.2, we can easily obtain the following theorem.

Theorem 2.5. Let $s=1,-1$ and let $\varphi:(V \backslash\{0\})^{3} \rightarrow[0, \infty)$ be a function satisfying the condition:

$$
\sum_{j=0}^{\infty} 3^{-2 s j} \varphi\left(3^{s j} x, 3^{s j} y 2,3^{s j} z\right)<\infty
$$

for all $x, y, z \in V \backslash\{0\}$. Suppose $f: V \rightarrow Y$ is a mapping such that

$$
\|D f(x, y, z)\| \leq \varphi(x, y, z)
$$

for all $x, y, z \in V \backslash\{0\}$ with $f(0)=0$. Then there exists a unique quadratic mapping $F: V \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq \sum_{i=0}^{\infty} 3^{2 \tau_{-s, i}} \varphi\left(\overline{3^{\tau_{s, i}} x}\right)
$$

for all $x \in V \backslash\{0\}$.
Corollary 2.6. Let p be a real number such that $p<0$. If $f: X \rightarrow$ Y is a mapping such that

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{2.6}
\end{equation*}
$$

for all $x, y, z \in X \backslash\{0\}$ and for some constant $\theta \geq 0$, then f is itself a quadratic mapping.

Proof. Put $\varphi(x, y, z):=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$ for all $x, y, z \in X \backslash\{0\}$ in Theorem 2.5. Choose $x \in X \backslash\{0\}$. Then

$$
\begin{aligned}
\|10 f(0)\|= & \| 8 D f(n x, n x, n x)-4 D f(2 n x,-n x,-n x) \\
& -27 D f(n x, n x,-n x)+21 D f(n x,-n x,-n x) \| \\
\leq & 8\|D f(n x, n x, n x)\|+4\|D f(2 n x,-n x,-n x)\| \\
& +27\|D f(n x, n x,-n x)\|+21\|D f(n x,-n x,-n x)\| \\
\leq & \left(176+4 \cdot 2^{p}\right) n^{p}\|x\|^{p} \\
\rightarrow & 0, \text { as } n \rightarrow \infty,
\end{aligned}
$$

which means that $f(0)=0$. On the other hand, there exists a unique quadratic mapping F such that

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{3 \theta\|x\|^{p}}{9-3^{p}} \tag{2.7}
\end{equation*}
$$

for all $x \in X \backslash\{0\}$ by Theorem 2.5. Since $2 f(x)=D f((k+1) x, k x, k x)-$ $f((3 k+1) x)+3 f((k+1) x)+6 f(k x)$ and $D F((k+1) x, k x, k x)=0$ for all $x \in X \backslash\{0\}$, it follows from (2.7) that

$$
\begin{aligned}
2 \| f(x) & -F(x) \| \\
\quad \leq & \|D f((k+1) x, k x, k x)\|+\|(F-f)((3 k+1) x)\| \\
& \quad+3\|(F-f)((k+1) x)\|+6\|(F-f)(-k x)\| \\
\leq & \left((k+1)^{p}+2 k^{p}+\frac{3\left((3 k+1)^{p}+3(k+1)^{p}+6 k^{p}\right)}{9-3^{p}}\right) \theta\|x\|^{p} \\
& \rightarrow 0, \text { as } k \rightarrow \infty,
\end{aligned}
$$

i.e, $f(x)=F(x)$ for all $x \in X \backslash\{0\}$. Because $f(0)=0=F(0)$, we get the desired result.

3. Stability of the set-valued functional equation (1.1)

In this section, we present some related concepts and results which are mainly derived from $[16,17]$.

From now on, let V be a real vector space and Y a Banach space. The family of all nonempty closed convex subsets of Y will be denoted by $c c(Y)$.

Let A, B be nonempty subsets of a real vector space V and let λ and μ be real numbers. If we define

$$
\begin{array}{r}
A+B:=\{x \in V: x=a+b, \quad a \in V, \quad b \in B\} \\
\lambda A:=\{x \in V: x=\lambda a, \quad a \in V\}
\end{array}
$$

then

$$
\begin{aligned}
& \lambda(A+B)=\lambda A+\lambda B \\
& (\lambda+\mu) A \subseteq \lambda A+\mu A
\end{aligned}
$$

Moreover, if A is a convex set and $\lambda \mu \geq 0$, then we have

$$
(\lambda+\mu) A=\lambda A+\mu A
$$

In this paper, we get the stability result of the set-valued functional equation

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right) \subseteq n \sum_{i=1}^{n} f\left(x_{i}\right) \tag{3.1}
\end{equation*}
$$

for all $x, x_{1}, \ldots, x_{n} \in V$.
THEOREM 3.1. Let $c c(Y)$ are the family of all nonempty closed convex subsets of Y. If $f: V \rightarrow c c(Y)$ is a set-valued mapping satisfying the inclusion (3.1) and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\operatorname{diam}\left(f\left(n^{m} x\right)\right)}{n^{2 m}}=0 \tag{3.2}
\end{equation*}
$$

for all $x, x_{1}, \ldots, x_{n} \in V$, then there exists a unique quadratic mapping $g: V \rightarrow Y$ such that $g(x) \in f(x)-\frac{n}{2 n+2} f(0)$ for all $x \in V$.

Proof. Since $f(0) \in c c(Y), f(0)$ has at least an element, say $p \in f(0)$. Putting $x_{k}=0$ for $k \in\{1,2, \ldots, n\}$ in (3.1), we have

$$
\frac{n(n-1)+2}{2} p \in f(0)+\frac{n(n-1)}{2} f(0) \subseteq n^{2} f(0)
$$

which means that $\frac{n(n-1)+2}{2 n^{2}} p \in f(0)$. So $\left(\frac{n(n-1)+2}{2 n^{2}}\right)^{m} p \in f(0)$ for all $m \in \mathbb{N}$ and $0=\lim _{m \rightarrow \infty}\left(\frac{n(n-1)+2}{2 n^{2}}\right)^{m} p \in f(0)$. Putting $x_{k}=x$ for $k \in\{1,2, \ldots, n\}$ in (3.1), we have

$$
\begin{align*}
f(n x) & =f(n x)+\frac{n(n-1)}{2}\{0\} \\
& \subseteq f(n x)+\frac{n(n-1)}{2} f(0) \subseteq n^{2} f(x) \tag{3.3}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
f(n x) \subseteq n^{2} f(x) \tag{3.4}
\end{equation*}
$$

Replacing x by $n^{m-1} x$ and dividing both sides by $n^{2 m}$ in (3.4), then we obtain

$$
n^{-2 m} f\left(n^{m} x\right) \subseteq n^{-2 m+2} f\left(n^{m-1} x\right)
$$

for all $x \in V$. Denoting $F_{m}(x):=n^{-2 m} f\left(n^{m} x\right)$ for all $x \in V$ and $m \in \mathbb{N} \cup\{0\}$, it results that $\left\{F_{m}(x)\right\}_{m}$ is a decreasing sequence of closed subsets of the Banach space Y. By (3.2), we get $\lim _{n \rightarrow \infty} \operatorname{diam}\left(F_{m}(x)\right)=$ $\operatorname{diam}\left(n^{-2 m}\left(f\left(n^{m} x\right)\right)\right)=0$ for all $x \in V$. For the sequence $\left\{F_{m}(x)\right\}_{m \geq 0}$, the intersection $\bigcap_{m>0} F_{m}(x)$ has a single element and we denote this single element by $g(x)$ for all $x \in V$. Thus we obtain a mapping $g: V \rightarrow$ Y which is a selection of f because $g(x) \in F_{0}(x)=f(x)$ for all $x \in V$.

Now we show that g is quadratic. From the definition of $F_{m}(x)$, we know that

$$
\begin{aligned}
F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right)= & n^{-2 m} f\left(\sum_{i=1}^{n} n^{m} x_{i}\right) \\
& +\sum_{1 \leq i<j \leq n} n^{-2 m} f\left(n^{m} x_{i}-n^{m} x_{j}\right) \\
\subseteq & n \sum_{i=1}^{n} n^{-2 m} f\left(n^{m} x_{i}\right) \\
= & n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in V$. With the definition of g and the above property, we have

$$
\begin{aligned}
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} g\left(x_{i}-x_{j}\right) & \in F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right) \\
& \subseteq n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)
\end{aligned}
$$

and

$$
n \sum_{i=1}^{n} g\left(x_{i}\right) \in n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)
$$

for all $m \geq 0$ and $x_{1}, \cdots, x_{n} \in V$. Since

$$
n \sum_{i=1}^{n} F_{m+1}\left(x_{i}\right) \subseteq n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)
$$

and

$$
\operatorname{diam}\left(n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)\right) \leq n \sum_{i=1}^{n} \operatorname{diam}\left(F_{m}\left(x_{i}\right)\right) \rightarrow 0 \text { as } m \rightarrow \infty
$$

for any $x_{1}, \ldots, x_{n} \in V$, it results that $\left\{n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)\right\}_{\geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. For this sequence, the intersection $\bigcap_{m \geq 0}\left(n \sum_{i=1}^{n} F_{m}\left(x_{i}\right)\right)$ has a single element and so we have

$$
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} g\left(x_{i}-x_{j}\right)=n \sum_{i=1}^{n} g\left(x_{i}\right)
$$

for all $x_{1}, \ldots, x_{n} \in V$. Therefore, we conclude that there exists a quadratic mapping $g: V \rightarrow Y$ such that $g(x) \in f(x)$ for all $x \in V$.

Next, we will finalize the proof by proving the uniqueness of g for the case $g(x) \in f(x)$. Suppose that $g^{\prime}: V \rightarrow Y$ is another quadratic mapping such that $g^{\prime}(x) \in f(x)$ for all $x \in V$. We have

$$
\begin{gathered}
g(x)=\frac{g\left(n^{m} x\right)}{n^{2 m}} \in \frac{f\left(n^{m} x\right)}{n^{2 m}} \text { and } \\
g^{\prime}(x)=\frac{g^{\prime}\left(n^{m} x\right)}{n^{2 m}} \in \frac{f\left(n^{m} x\right)}{n^{2 m}}
\end{gathered}
$$

for all $m \in \mathbb{N} \cup\{0\}$. Since the intersection $\bigcap_{m \geq 0} \frac{f\left(n^{m} x\right)}{n^{2 m}}$ has a single element, we have $g(x)=g^{\prime}(x)$ for all $x \in V$, as desired.

The following corollary is a refined stability result of Theorem 3.1 in [17] if we take $n=2$.

Corollary 3.2. If $f: V \rightarrow c c(Y)$ is a set-valued mapping satisfying the conditions

$$
f(x+y)+f(x-y) \subseteq 2 f(x)+2 f(y)
$$

and

$$
\sup \{\operatorname{diam}(f(x)): x \in V\}<+\infty
$$

for all $x, y \in V$, then there exists a unique quadratic mapping $g: V \rightarrow Y$ such that $g(x) \in f(x)$ for all $x \in V$.

Proof. Since $\sup \{\operatorname{diam}(f(x)): x \in V\}<+\infty$, we get

$$
\lim _{m \rightarrow \infty} \operatorname{diam}\left(\frac{f\left(2^{m} x\right)}{4^{m}}\right)=0
$$

for all $x \in V$. By Theorem 3.1, we complete the proof, where $g(x) \in$ $f(x)$.

Theorem 3.3. If $f: V \rightarrow c c(Y)$ is a set-valued mapping satisfying

$$
\begin{equation*}
n \sum_{i=1}^{n} f\left(x_{i}\right) \subseteq f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} n^{2 m} \operatorname{diam}\left(f\left(\frac{x}{n^{m}}\right)\right)=0 \tag{3.6}
\end{equation*}
$$

for all $x, x_{1}, \ldots, x_{n} \in V$, then there exists a unique quadratic mapping $g: V \rightarrow Y$ such that $g(x) \in f(x)+(-1) f(0)$ for all $x \in V$.

Proof. Since $n>1$ and $n^{2} f(0) \subset \frac{n(n-1)+2}{2} f(0)$, we easily get $f(0)$ is a singleton set and $f(0)=\{0\}$. Taking $x_{i}=x$ for all $i=1,2, \ldots, n$ in (3.5), we obtain

$$
\begin{equation*}
n^{2} f(x) \subseteq f(n x)+\frac{n(n-1)+2}{2}\{0\}=f(n x) \tag{3.7}
\end{equation*}
$$

for all $x \in V$. Denoting $F_{m}(x)=n^{2 m} f\left(\frac{x}{n^{m}}\right), x \in V, m \in \mathbb{N} \cup\{0\}$, we obtain that $\left\{F_{m}(x)\right\}_{m \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y. We have also

$$
\operatorname{diam}\left(F_{m}(x)\right)=\operatorname{diam}\left(n^{2 m} f\left(\frac{x}{n^{m}}\right)\right)=n^{2 m} \operatorname{diam}\left(f\left(\frac{x}{n^{m}}\right)\right) .
$$

By (3.6), we get $\lim _{m \rightarrow \infty} \operatorname{diam}\left(F_{m}(x)\right)=0$ for all $x \in V$.
For the sequence $\left\{F_{m}(x)\right\}_{m \geq 0}$, we obtain that the intersection $\bigcap_{m \geq 0}$ $F_{m}(x)$ has a single element and we denote this element by $g(x)$ for all
$x \in V$. Thus we obtain a mapping $g: V \rightarrow Y$ such that $g(x) \in F_{0}(x)=$ $f(x)$ for all $x \in V$.

Now we show that g is quadratic. From the definition of $F_{m}(x)$, we know that

$$
\begin{aligned}
n \sum_{i=1}^{n} F_{m}\left(x_{i}\right) & =n \sum_{i=1}^{n} n^{2 m} f\left(\frac{x_{i}}{n^{m}}\right) \\
& \subseteq n^{2 m} f\left(\sum_{i=1}^{n} \frac{x_{i}}{n^{m}}\right)+\sum_{1 \leq i<j \leq n} n^{2 m} f\left(\frac{x_{i}-x_{j}}{n^{m}}\right) \\
& =F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in V$. With the definition of g and the above property, we have

$$
n \sum_{i=1}^{n} g\left(x_{i}\right) \in n \sum_{i=1}^{n} F_{m}\left(x_{i}\right) \subseteq F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right)
$$

and
$g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} g\left(x_{i}-x_{j}\right) \in F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right)$
for all $m \geq 0$ and $x_{1}, \cdots, x_{n} \in V$. Since

$$
\begin{aligned}
F_{m+1}\left(\sum_{i=1}^{n} x_{i}\right) & +\sum_{1 \leq i<j \leq n} F_{m+1}\left(x_{i}-x_{j}\right) \\
& \subseteq F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

and
$\operatorname{diam}\left(F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-x_{j}\right)\right)$
$\leq \operatorname{diam}\left(F_{m}\left(\sum_{i=1}^{n} x_{i}\right)\right)+\sum_{1 \leq i<j \leq n} \operatorname{diam}\left(F_{m}\left(x_{i}-x_{j}\right)\right) \rightarrow 0$ as $m \rightarrow \infty$,
for any $x_{1}, \ldots, x_{n} \in V$, it results that $\left\{F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-\right.\right.$ $\left.\left.x_{j}\right)\right\}_{m \geq 0}$ is a decreasing sequence of closed subsets of the Banach space Y.

For this sequence, the intersection $\bigcap_{m \geq 0}\left(F_{m}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} F_{m}\left(x_{i}-\right.\right.$ x_{j})) has a single element and so we have

$$
n \sum_{i=1}^{n} g\left(x_{i}\right)=g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} g\left(x_{i}-x_{j}\right)
$$

for all $x_{1}, \ldots, x_{n} \in V$.
Therefore, we conclude that there exists a quadratic mapping $g: V \rightarrow$ Y such that $g(x) \in f(x)$ for all $x \in V$.

Next, we will finalize the proof by proving the uniqueness of g for the case $g(x) \in f(x)$. Suppose that $g^{\prime}: V \rightarrow Y$ is another quadratic mapping such that $g^{\prime}(x) \in f(x)$ for all $x \in V$. We have

$$
\begin{aligned}
& g(x)=n^{2 m} g\left(\frac{x}{n^{m}}\right) \in n^{2 m} f\left(\frac{x}{n^{m}}\right), \\
& g^{\prime}(x)=n^{2 m} g^{\prime}\left(\frac{x}{n^{m}}\right) \in n^{2 m} f\left(\frac{x}{n^{m}}\right)
\end{aligned}
$$

for all $m \in \mathbb{N} \cup\{0\}$. Since

$$
\operatorname{diam}\left(n^{2 m} f\left(\frac{x}{n^{m}}\right)\right) \rightarrow 0 \text { as } m \rightarrow \infty,
$$

the intersection $\bigcap_{m \geq 0} n^{2 m} f\left(\frac{x}{n^{m}}\right)$ has a single element and so we have $g(x)=g^{\prime}(x)$ for all $x \in V$, as desired.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[2] I.-S. Chang, E.-H. Lee, and H.-M. Kim, On Hyers-Ulam-Rassias stability of a quadratic functional equation, Math. Inequal. Appl. 6 (2003), 87-95.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hamb. 62 (1992) 59-64.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224.
[6] S.-S. Jin and Y.-H. Lee, Generalized Hyers-Ulam stability of a 3-dimensional quadratic functional equation, Int. J. Math. Anal. (Ruse), 10 (2016), 719-728.
[7] S.-S. Jin and Y.-H. Lee, Generalized Hyers-Ulam stability of a 3-dimensional quadratic functional equation in modular spaces, Int. J. Math. Anal. (Ruse), 10 (2016), 953-963.
[8] S.-S. Jin and Y.-H. Lee, Hyers-Ulam-Rassias stability of a functional equation related to general quadratic mappings, Honam Math. J. 39 (2017), 417-430.
[9] S.-S. Jin and Y.-H. Lee, Stability of a functional equation related to quadratic mappings, Int. J. Math. Anal. (Ruse), 11 (2017), 55-68.
[10] S.-S. Jin and Y.-H. Lee, Stability of two generalized 3-dimensional quadratic functional equations, J. Chungcheong Math. Soc. 31 (2018), 29-42.
[11] K.-W. Jun and Y.-H. Lee, A Generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations II, Kyungpook Math. J. 47 (2007), 91-103.
[12] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137.
[13] G.-H. Kim, On the stability of functional equations with square-symmetric operation, Math. Inequal. Appl. 4 (2001), 257-266.
[14] Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), 397-403.
[15] Y.-H. Lee and K.-W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[16] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Nr. 559 (1989).
[17] C. Park, D. O'Regan, and R. Saadati, Stability of some set-valued functional equations, Applied Mathematics Letters, 24 (2011), 1910-1914.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[19] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[20] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
$*$
Department of Mathematics Education Gongju National University of Education Gongju 32588, Republic of Korea
E-mail: ssjin@ gjue.ac.kr
**
Department of Mathematics Education
Gongju National University of Education
Gongju 32588, Republic of Korea
E-mail: yanghi2@hanmail.net

[^0]: Received May 03, 2018; Accepted September 19, 2018.
 2010 Mathematics Subject Classification: Primary 65J15; Secondary 65D15, 39B82.

 Key words and phrases: stability of functional equation, n-dimensional quadratic functional equation, quadratic mapping.

 Correspondence should be addressed to Yang-Hi Lee, yanghi2@hanmail.net.
 This work was supported by Gongju National University of Education Grant 2017.

