• Title/Summary/Keyword: $CO_2$ budget

Search Result 100, Processing Time 0.028 seconds

The Comparison of Certified Emission Reductions Forecasting Model Using Price of Certified Emission Reductions and Related Search Keywords (탄소배출권 가격과 연관검색어를 활용한 탄소배출권 가격 예측 방법론 비교)

  • Kim, Hyeonho;Im, Giseong;Kim, Yujin;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.44-45
    • /
    • 2020
  • Korea has the fourth highest CO2 emission among OECD countries in 2018, As of 2019, total greenhouse gas emissions per capita increased by about 98.2% in comparison to 1990. Korea has promised a 37% reduction in greenhouse gas emissions in 2030 from the projected Paris Climate Change Accord. Currently, many countries use the emissions trading system(ETS) for international carbon management. In 2015, ETS has been implemented in Korea, and the importance of calculating CO2 emissions from construction machinery has increased. So, we require an accurate calculation of the environmental charges through the allocated CERs. Using the CER price and related search keywords, this paper derive about prediction models of CER price and compare and focus on more accurate prediction about CER price. By this method, the budget needed to establish the initial construction process plan can be calculated based on more accurate predicted CER price.

  • PDF

Growth, Dry Matter Partitioning and Photosynthesis in North American Ginseng Seedlings

  • Proctor, John T.A.;Palmer, John W.;Follett, John M.
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.175-182
    • /
    • 2010
  • North American ginseng seedlings (Panax quinquefolius L.) were grown in pots in heated greenhouses, in a cool greenhouse, or in the field, in 11 experiments at various times over 16 years. Crop establishment, dry matter partitioning, photosynthesis, radiation use efficiency and carbon budget were measured and/or calculated in some years. Once the seedling canopy, of about $20\;cm^2$ per seedling, and a leaf area index of 0.37, was established, about 40 days after germination, full canopy display lasted about 87 days. Only 16.6% of the incoming solar radiation was intercepted by the crop, the remainder falling on the mulched soil surface. Total and root dry matter accumulations in the cool greenhouse and in the field were about double that in the heated greenhouses. Partitioning of dry matter to roots (economic yield or harvest index) in the cool greenhouse and in the field was 73% whereas it was 62.5% in the heated greenhouses. The relationship between root dry matter and radiation interception during the full canopy period was linear with growth efficiencies of $2.92\;mg\;MJ^{-1}$ at 4.8% of incoming radiation and $0.30\;mg\;MJ^{-1}$ at 68% of incoming radiation. A photosynthetic rate of $0.39\;g\;m^{-2}\;h^{-1}$ was attained at light saturation of about $150\;{\mu}mol\;m^{-2}\;s^{-1}$ (7.5% of full sunlight); dark respiration was $0.03\;g\;m^{-2}\;h^{-1}$, about 8.5% of maximum assimilation rate. Estimates of dry matter accumulation by growth analysis and by $CO_2$ uptake were similar, 6.21 vs. 7.62 mg $CO_2$, despite several assumptions in $CO_2$ uptake calculations.

Co-work Program for Engineering Education through Competition (공모전을 통한 공학 교육적 산학 협력 모델)

  • Jang, Woon-Geun
    • Journal of Engineering Education Research
    • /
    • v.11 no.2
    • /
    • pp.65-78
    • /
    • 2008
  • Currently co-work programs between industries and engineering schools play an important role for mutual interests, win-win strategy. Industries can develop new technologies through the human resources and facilities in school and schools are able to have research achievements by applying their own theoretical abilities to real field of industries's projects. However most co-work programs between industries and engineering schools mainly focus on programs such as research projects with graduate research lab, on-site training for job and training program for field engineers. And more it is difficult for schools to make co-work programs targeted engineering education for undergraduate school students because of many constraints such as planing program, budget and indifference of companies. Therefore this paper introduces LG Electronics Display Idea Competition hosted by LG Display Division in Kumi, S. Korea and present what benefits to both school and company made through this program and unique model of co-work program for engineering education between school and company in country.

Optimal Design of Accelerated Degradation Tests under the Constraint of Total Experimental Cost in the Case that the Degradation Characteristic Follows a Wiener Process (열화가 Wiener process를 따르는 경우의 비용을 고려한 가속열화시험 계획)

  • Lim, Heon-Sang
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.2
    • /
    • pp.117-125
    • /
    • 2012
  • For the highly reliable products, an accelerated degradation test (ADT) is a useful tool which has been employed in industry to obtain reliability-related information within an affordable amount of time and cost. In an ADT, as all other reliability tests, it is important to carefully design the ADT beforehand to obtain estimates of the quantities of interest as precisely as possible. In this paper, optimal ADTs are developed assuming that the constant-stress loading method is employed and the degradation characteristic follows a Wiener process. Under the constraint that the total cost does not exceed a pre-specified budget, the stress levels, the number of test units allocated to each stress level and the number of measurement (termination time) are determined such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Numerical Model study of Surface Temperature and Hydrological Budget Change for the Last Glacial Maximum (마지막 최대 빙하기의 온도 및 물수지 변화 수치모델연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 2006
  • The surface temperature and hydrological budget for the last glacial maximum (LGM) is simulatedwith an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corespondingto a grid cel size of roughly 75 km. LGM simulations were forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced CO2, and orbital parameters.oC in winter, 5.6oC in sumer,and 6oC annual-mean. The decrease of surface temperature leads to a weakening of the hydrologicalcycle. Global-mean precipitation decreases by about 14% in winter, 17% in summer, and 13% annually.However, some regions such as the U.S., southern Europe, northern and eastern Africa, and the SouthAmerica appear to be weter in the LGM winter and Canada and the Midle East are weter in sumer. model captures detailed climate features over land.

  • PDF

Intercomparison of Atmospheric Formaldehyde Measurement Results during the 2002 FORMAT Summer Campaign at Milan, Italy (2002년 여름 이태리 밀란 지역 FORMAT 캠페인 기간 대기 중 포름알데하이드 측정결과 비교)

  • ;;;;;Claudia Hak;Sebastian Trick
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.87-88
    • /
    • 2003
  • 포름알데하이드는 오염된 혹은 깨끗한 대기 환경에서 편재하는 오염물질이다. 일반적으로 깨끗한 대기 환경에서 수 ppt의 농도로 존재하지만 오염도가 높은 도시지역에서 여름철 심한 스모그 현상이 일어나면 수십 ppb의 농도를 보이기도 한다. 포름알데하이드는 1차 혹은 2차 대기오염물질이고, 탄화수소의 광화학 반응의 중간 생성물로써 포름알데하이드는 도시지역에서의 광화학 반응의 오염물질의 형성에 기여한다. 따라서 포름알데하이드의 측정은 CO의 지구적 수지(budget)와 다양한 대기 반응 물질 사이의 수지와 회전(cycling)을 이해하고 대류권의 광화학모델을 증명하는데 중요하다. (중략)

  • PDF

A Study on Best Generation Mix - Vision 2030 (적정 전원 구성에 관한 연구 - 비전 2030)

  • Jeong, Sang-Heon;Park, Jeong-Je;Shi, Bo;Wu, Liang;Choi, Jae-Seok;Kim, Ji-Nu;Lee, Yu-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.176-179
    • /
    • 2007
  • This paper proposes a fuzzy linear programming based solution approach fur the long-term generation mix with multi-stages (years) considering air pollution constraints on $CO_2$ emissions, under uncertain circumstances as like as ambiguities of budget and reliability criterion level. This paper approaches to generation mix problem for 2030 year in Korea eventually. The proposed approach may give more flexible solution rather than too robust plan. The effectiveness of the proposed approach is demonstrated by applying it to solve the multi-years best generation mix problem on the Korea power system which contains nuclear, coal, LNG, oil and pumped-storage hydro plants.

  • PDF

An analytical study on the Effect of High impedance Transformer to reduce Distribution Fault Current (변압기 임피던스 증가에 의한 배전계통의 고장전류 저감방안의 영향분석)

  • Lee, Hyun-Chul;Lee, Geun-Joon;Hyun, Ok-Bae;Hwang, Si-Dol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.239_240
    • /
    • 2009
  • This paper presents the brief analytical study on 돋 effects of higher impedance transformer(HIT) to reduce distribution system fault current. With the increase of source and load capacity of power system, fault current of D/L is much more increased and, conventional protection equipment-such as sectionalizer and recloser, have to be replaced higher switching capacity. However, this replacements needs a lot of budget to utility. Increase of transformer impedance is can be a countermeasure in practical basis. This paper compares the voltage and fault current magnitude of both cases -%Zt=20% and %Zt2=33.3%(transformer capacity is 75/100MVA). The simulation results show that the steady state voltage of HIT is dropped 5~6% more in peak load, and fault current was decreased about 5kA by high impedance on transformer.

  • PDF

Conceptual Design of 100 MWe Oxy-coal Power Plant-Youngdong Project (100 MWe 순산소 석탄연소 발전시스템의 개념설계-영동 프로젝트)

  • Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.30-45
    • /
    • 2012
  • An existing unit of power plant is considered to refurbish it for possible application of carbon capture and storage(CCS). Conceptual design of the plant includes basic considerations on the national and international situation of energy use, environmental concerns, required budget, and time schedule as well as the engineering concept of the plant. While major equipment of the recently upgraded power plant is going to be reused, a new boiler for air-oxy fired dual mode operation is to be designed. Cryogenic air separation unit is considered for optimized capacity, and combustion system accommodates flue gas recirculation with multiple cleaning and humidity removal units. The flue gas is purified for carbon dioxide separation and treatment. This paper presents the background of the project, participants, and industrial background. Proposed concept of the plant operation is discussed for the possible considerations on the engineering designs.