마지막 최대 빙하기의 온도 및 물수지 변화 수치모델연구

Numerical Model study of Surface Temperature and Hydrological Budget Change for the Last Glacial Maximum

  • 발행 : 20060000

초록

미국 해양대기청의 CCM3 기후모델을 이용하여 마지막최대빙하기 (Last Glacial Maximum(LGM)의 기온 및 물. 이용된 수치모델의 수평해상도는 약 75 km로 비교적 상세한 기후 기작들이 표현된다. LGM 실험은 CLIMAP 프로젝트에서 복원된 표층해수가 경계조건으로 이용되었으며 , LGM에 낮았던 대기 이산화탄소농도(200 pm) 이 적용되었고, 대륙빙하를 포함한 LGM 지표지형이 표현되었다 . LGM 경계조건하에서 전구온도는 겨울철 6.1도 여름철 5.6도 그리고 연평균 6도정도 감소한 것으로 시뮬레이션 된다 . 표층 기온의 감소는 14% 감소하고 여름에 17% 그리고 연간 13% 감소한다. 하지만, 미국, 남부유럽, 동아프리카, 남아메리카 등은 겨울에 현재보다 더 습하게 나타나며 , 캐나다 와 중동 지방은 여름철에 습윤하게 시뮬레이션 된다 . 이런 결과들은 호수면 변화기록으로부터 복원한 고기후 프락시 물수지 자료들과도 대체로 잘 일치한다 . 전체적으로 고해상도 기후모델은 지상에서 나타나는 세부적인 특징들을 잘 재현해내고 있다 .

The surface temperature and hydrological budget for the last glacial maximum (LGM) is simulatedwith an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corespondingto a grid cel size of roughly 75 km. LGM simulations were forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced CO2, and orbital parameters.oC in winter, 5.6oC in sumer,and 6oC annual-mean. The decrease of surface temperature leads to a weakening of the hydrologicalcycle. Global-mean precipitation decreases by about 14% in winter, 17% in summer, and 13% annually.However, some regions such as the U.S., southern Europe, northern and eastern Africa, and the SouthAmerica appear to be weter in the LGM winter and Canada and the Midle East are weter in sumer. model captures detailed climate features over land.

키워드

참고문헌

  1. Bonan, G., 1998, The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model, J. Clim., 11, 1307-1326 https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  2. CLIMAP, 1979, The surface of the ice-age earth, Science, 191, 1131-1136 https://doi.org/10.1126/science.191.4232.1131
  3. CLIMAP, 1981, Seasonal reconstructions of the Earth's surface at the last glacial maximum, Geol. Soc. Amer. Map Chart Ser., MC-36
  4. Crowley, T.J. and North, G.R., 1991, Paleoclimatology, Oxford Monographs on Geology and Geophysics 18, Oxford University Press, New York
  5. Duffy, P.B., Govindasamy, B., Iorio, J.P., Milovich, J., Sperber, K.R., Taylor, K.E., Wehner, M.F., and Thompson, S.L., 2003, High-resolution simulations of global climate, part 1: present climate, Clim. Dyn., 21, 371-390 https://doi.org/10.1007/s00382-003-0339-z
  6. Fairbanks, R.G., 1989, A 17000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature, 342, 637-642 https://doi.org/10.1038/342637a0
  7. Farrera, I., Harrison, S.P., Prentice, I.C., Ramstein, G., Guiot, J., Bartlein, P.J, Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U, Holmgren, K., Hooghiemstra, H., Hope, G., Jolly, D., Lauritzen, S.-E., Ono, Y, Pinot, S., Stute, M., and Yu. G., 1999, Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial paleoclimate data, I Vegetation, lake-levels and geochemistry, Clim. Dyn., 15, 823-856 https://doi.org/10.1007/s003820050317
  8. Ganopolski, A., Rahmstorf, S., Petoukhov, V, and Claussen, M., 1998, Simulation of modern and glacial climates with a coupled global model of intermediate complexity, Nature, 391, 351-356 https://doi.org/10.1038/34839
  9. Gates, W.L., 1976, Modelling the Ice-Age climate, Science, 191, 1138-1144 https://doi.org/10.1126/science.191.4232.1138
  10. Hewitt, C.D., Broccoli, A.C., Mitchell, J.E, and Stouffer, R.J., 2001, A coupled model study of the last glacial maximum: Was part of the North Atlantic relatively warm?, Geophys. Res. Lett., 28, 1571-1574 https://doi.org/10.1029/2000GL012575
  11. IPCC (Intergovernmental Panel on Climate Change), 2001, Third Assessment Report - Climate Change 2001
  12. Kiehl, J.T., Hack, J.J., Bonan, B.G., Boville, B.A., Williamson, D.L., and Rasch, P., 1998a, The National Center for Atmospheric Research Community Climate Model: CCM3, J. Clim., 11, 1131-1149 https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2
  13. Kiehl, J.T., Hack,J.J., and Hurrell, J, 1998b, The energy budget of the NCAR Community Climate Model: CCM3, J. Clim., 11,1151-1178 https://doi.org/10.1175/1520-0442(1998)011<1151:TEBOTN>2.0.CO;2
  14. Kim, S.-J., Flato, G.M., Boer, G.J., and McFarlane, N.A., 2002, A coupled climate model simulation of the Last Glacial Maximum, Part 1: Transient multi-decadal response, Clim. Dyn., 19, 515-537 https://doi.org/10.1007/s00382-002-0243-y
  15. Kim, S.-J., Flato, G.M., and Boer, G.J., 2003, A coupled climate model simulation of the Last Glacial Maximum, Part 2: approach to equilibrium, Clim. Dyn., 20,635-661 https://doi.org/10.1007/s00382-002-0292-2
  16. Kohfeld, K.E. and Harrison, S.P., 2000, How well can we simu-late past climates? Evaluating the models using global paleoenvironmental datasets, Quat. Sci. Rev., 19,321-346 https://doi.org/10.1016/S0277-3791(99)00068-2
  17. Kutzbach, J.E. and Guetter, P., 1986, The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years, J. Atmos. Sci., 43, 1726-1738 https://doi.org/10.1175/1520-0469(1986)043<1726:TIOCOP>2.0.CO;2
  18. Manabe, S. and Hahn, D.G., 1977, Simulation of the tropical climate of an ice age, J. Geophys. Res., 82, 3889-3911 https://doi.org/10.1029/JC082i027p03889
  19. Peltier, W.R., 1994, Ice age paleotopography, Science, 265, 195-201 https://doi.org/10.1126/science.265.5169.195
  20. Peterson, G.M., Webb III, T, Kutzbach, J.E., van der Hammen, T, Wijmstra, T.A, and Street, F.A, 1979, The continental record of environmental conditions at 18,000 yr BP: an initial evaluation, Quat. Res., 12, 47-82 https://doi.org/10.1016/0033-5894(79)90091-7
  21. Petit, J.R., Briat, M., and Royer, A, 1981, Ice age aerosol content from East Antarctic ice core samples and past wind strength, Nature, 293, 391-394 https://doi.org/10.1038/293391a0
  22. Sarnthein, M., Tetzlaff, G., Koopman, B., Wolter, K., and Pflaumann, U., 1981, Glacial and interglacial wind regimes over the eastern subtropical Atlantic and north-west Africa, Nature, 293, 193-196 https://doi.org/10.1038/293193a0
  23. Street-Perrott, F.A., Marchand, D.S., Roberts, N., and Harrison, S.P., 1989, Global lake-level variations from 18,000 years to 0 years ago: a paleoclimate analysis, US DOE/ER/60304-H1 TR046, US Dept Energy
  24. Toracinta, E.R., Oglesby, R.J., and Bromwich, D.H., 2004, Atmospheric response to modified CLIMAP ocean boundary conditions during the Last Glacial Maximum, J. Clim., 17, 504-522 https://doi.org/10.1175/1520-0442(2004)017<0504:ARTMCO>2.0.CO;2
  25. Weaver, A.J., Eby, M., Farming, A.F., and Wiebe, E.C., 1998, Simulated influence of carbon dioxide, oribital forcing and ice sheets on the climate of the last glacial maximum, Nature, 394,847-853 https://doi.org/10.1038/29695
  26. Xie, P., and Arkin, P.A., 1997, Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Amer. Meteor. Soc., 78, 2539-2558 https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2