• 제목/요약/키워드: ${\theta}_3$-series

검색결과 29건 처리시간 0.023초

QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF j(sub)1,8

  • Hong, Kuk-Jin;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제38권3호
    • /
    • pp.595-611
    • /
    • 2001
  • Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.

  • PDF

A REMARK OF EISENSTEIN SERIES AND THETA SERIES

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회보
    • /
    • 제39권2호
    • /
    • pp.299-307
    • /
    • 2002
  • As a by-product of [5], we produce algebraic integers of certain values of quotients of Eisenstein series. And we consider the relation of $\Theta_3(0,\tau)$ and $\Theta_3(0,\tau^n)$. That is,we show that $$\mid$\Theta_3(0,\tau^n)$\mid$=$\mid$\Theta_3(0,\tau)$\mid$,\bigtriangleup(0,\tau)=\bigtriangleup(0,\tau^n)$ and $J(\tau)=J(\tau^n)$ for some $\tau\in\eta$.

Theta series by primitive orders

  • Jun, Sung-Tae
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.583-602
    • /
    • 1995
  • With the theory of a certain type of orders in a Quaternion algebra, we construct Brandt matrices and theta series. As a application, we calculate the class number of a certain type of orders in a Quanternion algebra with the trace formular of Brandt matrices.

  • PDF

MOCK THETA FUNCTIONS OF ORDER 2 AND THEIR SHADOW COMPUTATIONS

  • Kang, Soon-Yi;Swisher, Holly
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2155-2163
    • /
    • 2017
  • Zwegers showed that a mock theta function can be completed to form essentially a real analytic modular form of weight 1/2 by adding a period integral of a certain weight 3/2 unary theta series. This theta series is related to the holomorphic modular form called the shadow of the mock theta function. In this paper, we discuss the computation of shadows of the second order mock theta functions and show that they share the same shadow with a mock theta function which appears in the Mathieu moonshine phenomenon.

ARITHMETIC OF THE MODULAR FUNCTION $j_4$

  • Kim, Chang-Heon;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.707-723
    • /
    • 1999
  • Since the modular curve $X(4)=\Gamma(4)/{\mathfrak{}}^*$ has genus 0, we have a field isomorphism K(X(4)){\approx}\mathcal{C}(j_{4})$ where $j_{4}(z)={\theta}_{3}(\frac{z}{2})/{\theta}_{4}(\frac{z}{2})$ is a quotient of Jacobi theta series ([9]). We derive recursion formulas for the Fourier coefficients of $j_4$ and $N(j_{4})$ (=the normalized generator), respectively. And we apply these modular functions to Thompson series and the construction of class fields.

  • PDF

ARITHMETIC OF INFINITE PRODUCTS AND ROGERS-RAMANUJAN CONTINUED FRACTIONS

  • Kim, Dae-Yeoul;Koo, Ja-Kyung;Simsek, Yilmaz
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.331-351
    • /
    • 2007
  • Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k$, $q=e^{{\pi}i\tau}$. We find a lot of algebraic properties derived from theta functions, and by using this we explore some new algebraic numbers from Rogers-Ramanujan continued fractions.

ON THE MODULAR FUNCTION $j_4$ OF LEVEL 4

  • Kim, Chang-Heon;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제35권4호
    • /
    • pp.903-931
    • /
    • 1998
  • Since the modular curves X(N) = $\Gamma$(N)\(equation omitted)* (N =1,2,3) have genus 0, we have field isomorphisms K(X(l))(equation omitted)C(J), K(X(2))(equation omitted)(λ) and K(X(3))(equation omitted)( $j_3$) where J, λ are the classical modular functions of level 1 and 2, and $j_3$ can be represented as the quotient of reduced Eisenstein series. When N = 4, we see from the genus formula that the curve X(4) is of genus 0 too. Thus the field K(X(4)) is a rational function field over C. We find such a field generator $j_4$(z) = x(z)/y(z) (x(z) = $\theta$$_3$((equation omitted)), y(z) = $\theta$$_4$((equation omitted)) Jacobi theta functions). We also investigate the structures of the spaces $M_{k}$($\Gamma$(4)), $S_{k}$($\Gamma$(4)), M(equation omitted)((equation omitted)(4)) and S(equation omitted)((equation omitted)(4)) in terms of x(z) and y(z). As its application, we apply the above results to quadratic forms.rms.

  • PDF

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES I

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.55-107
    • /
    • 2007
  • Let k be an imaginary quadratic field, h the complex upper half plane, and let $\tau{\in}h{\cap}k,\;q=e^{{\pi}i\tau}$. In this article, we obtain algebraic numbers from the 130 identities of Rogers-Ramanujan continued fractions investigated in [28] and [29] by using Berndt's idea ([3]). Using this, we get special transcendental numbers. For example, $\frac{q^{1/8}}{1}+\frac{-q}{1+q}+\frac{-q^2}{1+q^2}+\cdots$ ([1]) is transcendental.

ON THE INFINITE PRODUCTS DERIVED FROM THETA SERIES II

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1379-1391
    • /
    • 2008
  • Let k be an imaginary quadratic field, ${\eta}$ the complex upper half plane, and let ${\tau}{\in}{\eta}{\cap}k,\;q=e^{{\pi}{i}{\tau}}$. For n, t ${\in}{\mathbb{Z}}^+$ with $1{\leq}t{\leq}n-1$, set n=${\delta}{\cdot}2^{\iota}$(${\delta}$=2, 3, 5, 7, 9, 13, 15) with ${\iota}{\geq}0$ integer. Then we show that $q{\frac}{n}{12}-{\frac}{t}{2}+{\frac}{t^2}{2n}{\prod}_{m=1}^{\infty}(1-q^{nm-t})(1-q^{{nm}-(n-t)})$ are algebraic numbers.