THETA SERIES BY PRIMITIVE ORDERS

SUNGTAE JUN

ABSTRACT. With the theory of a certain type of orders in a Quaternion algebra, we construct Brandt matrices and theta series. As a application, we calculate the class number of a certain type of orders in a Quaternion algebra with the trace formula of Brandt matrices.

1. Introduction

It is well known that there is a close connection between the theory of orders in Quaternion algebra and modular forms of $\Gamma_0(N)$ [2], [4]. There are three types of orders in Quaternion algebra (See Definition 2.1 below). Among them, two types of orders, so called, special orders were studied in [4]. The remaining type was studied in [1] and [6], in different ways. As a consequence of [6], in this paper we define theta series associated with a certain type of orders in a rational Quaternion algebra. With the results of [6], we obtain a trace formula for the Brandt matrices, which will play a central role in determining the subspace of cusp forms generated by the theta series (See [7]). For an immediate application of trace formula, we obtain an explicit formula for class number of primitive orders.

2. Primitive orders in Quaternion Algebra

Let Q be the rational number field and Z be the ring of integers in Q. For a prime p of Q, we denote as Q_p the completion of Q at p, and for $p < \infty$, denote as Z_p the ring of integers in Q_p . Let A be a Quaternion algebra over Q_p . A prime p is said to ramify in A if $A_p = A \otimes Q_p$ is

Received March 21,1995. Revised June 3, 1995.

1991 AMS Subject Classification: 11F11, 11Y40.

Key words: orders, Quaternion algebra, Brandt matrices, theta series.

Partially supported by KOSEF 931-0100-016-1.

a division algebra over Q_p (see [8; p154]). Otherwise A_p is isomorphic to $Mat(2, Q_p)$ over Q_p and p is said to split in A (see [18; p184]). A lattice on A is a finitely generated Z submodule of A which contains a basis of A over Q. Since Z is a principal ideal domain, a lattice is a free Z module of rank 4. An order M of A is a lattice on A which is a subring containing the identity. There is a local-global correspondence for lattices which goes as follows [17; chapter IV]: to a lattice L on A, we associate the collection of lattices $L_p = L \otimes_Z Z_p$ of A_p , one for each $p < \infty$. Conversely, if we have a collection of lattices $\{L(p)|p < \infty\}$ on A_p , one for each $p < \infty$ and if there exists a lattice M on A such that $L(p) = M_p$ for almost all p, i.e. for all but a finite number of p, then there exists a unique lattice L on A such that $L(p) = L_p$ for all $p < \infty$. Replacing the word "lattice" by "order" above, we obtain the local-global correspondence for orders. An order of $A(\text{resp. } A_p)$ is said to be maximal if it is not properly contained in any other order of A(resp.) A_p) where p is a finite prime.

DEFINITION 2.1. An order M of A is said to be primitive if

- 1) for all finite ramified primes p of A, M_p contains a subring which is Z_p isomorphic to the ring of integers in some quadratic field extension of Q_p .
- 2) for all finite split primes p of A, M_p contains a subring which is Z_p isomorphic to the ring of integers in some quadratic field extension of Q_p or isomorphic to $Z_p \oplus Z_p$ in quadratic extension $Q_p \oplus Q_p$ of Q_p .

REMARK. For all ramified primes p of A, pritimitive orders M of A were studied by Hijikata, Pizer and Shemanske [4]. Also, for all finite split primes p of A, orders M_p of A_p which contain a subring which is Z_p -isomorphic to $Z_p \oplus Z_p$ were studied by Hijikata [3].

2.1 Now let us restrict to the case that really interests us at present. For the remainder of this paper, A will be a rational Quaternion algebra ramified precisely at one finite prime q and ∞ . Thus, $A_{\infty} = A \otimes_Q R$ is Hamilton's Quaternion algebra [10; p343].

If R is an order of A_p which contains \mathcal{O}_L , the ring of integers in a quadratic field extension L of Q_p for $p \neq q$, then the possibilities for R

are:

$$R = \left\{ \begin{array}{l} R_{2\nu}(L) = \mathcal{O}_L + \xi P_L^{\nu} \text{ if } L \text{ is unramified} \\ R_{\nu}(L) = \mathcal{O}_L + (1+\xi)P_L^{\nu-1} \text{ if } L \text{ is ramified} \\ \bar{R}_0(L) = \mathcal{O}_L + (1-\xi)P_L^{-1} \text{ if } L \text{ is ramified} \end{array} \right.$$

for some nonnegative integer ν where $A_p = L + \xi L$ and P_L is the prime ideal of $\mathcal{O}_L(\text{See [6]})$.

DEFINITION 2.2. Let A be a rational Quaternion algebra which is ramified precisely at one finite prime q and ∞ . For finite odd primes $p_1, p_2, ..., p_d \neq q$, an order of M of A is said to have level $(q; L(p_1), \nu(p_1); L(p_2), \nu(p_2); ..., L(p_d), \nu(p_d))$ if

- i) M_q is the maximal order of A_q .
- ii) for a prime $p \neq q$, there exists a quadratic field extension L(p) of Q_p and a nonnegative integer $\nu(p)$ (which is even if L(p) is unramified) such that $M_p = R_{\nu(p)}(L(p))$
- iii) $\nu(p_i) > 0$ for i = 1, 2, ..., d and $\nu(p) = 0$ for $p \neq q, p_1, ..., p_d$. (i.e. M_p is a maximal order of A_p if $p \neq p_1, p_2, ..., p_d$).

REMARK. For notational convenience, we put $N'=(q;L(p_1),\nu(p_1);...,L(p_d),\nu(p_d))$ and $N=q\prod_{i=1}^d p_i^{\nu(p_i)}$ throughout this paper.

DEFINITION 2.3. Let M be an order of level N' in A. A left M ideal I is a lattice on A such that $I_p = M_p a_p$ for some $(a_p \in A_p^{\times})$ for all $p < \infty$. Two left M ideals I and J are said to belong to the same class if I = Ja for some $a \in A^{\times}$. One has the obvious analogous definitions for right M ideals.

Definition 2.4. The class number of left ideals for any order M of level

 $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ is the number of distinct classes of such ideals. We denote this class number by H(N').

DEFINITION 2.5. Let I be a (left or right) M ideal for some order M of level N' in A. The left order of $I = \{a \in A | aI \subset I\}$ and the right order of $I = \{a \in A | Ia \in I\}$.

DEFINITION 2.6. The norm of an ideal, denoted by N(I), is the positive rational number which generates the fractional ideal of Q generated

by $\{N(a)|a \in I\}$. The conjugate of an ideal I, denoted by \bar{I} , is given by $\bar{I} = \{\bar{a}|a \in I\}$. The inverse on an ideal, denoted by I^{-1} , is given by $I^{-1} = \{a \in A|IaI \subset I\}$.

REMARK. Locally, if $I_p = M_p a_p$ for some $a_p \in A_p^{\times}$, then we define $N(I_p) = N(a_p) \mod Z_p^{\times}$.

Note: If we have two ideals I and J with right order of I equal to the left order of J, then IJ (= all finite sums $\sum_{i_k \in I, j_k \in J} (i_k j_k)$ with $i_k \in I$ and $j_k \in J$) is an ideal with left order equal to the left order of I and right order equal to right order of J (see [16; p210]).

PROPOSITION 2.7. Let M be an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$. Let I be a left M ideal with right order M'. Then

- i) \bar{I} is a left M' ideal with right order M and $N(\bar{I}) = N(I)$.
- ii) $II^{-1} = M$ and $I^{-1}I = M'$.
- iii) I^{-1} is a left M' ideal with right order M and $N(I^{-1}) = N(I)^{-1}$.

PROOF. i) By Definition 2.5, it is clear that \bar{I} is a Z lattice. Furthermore,

$$(\overline{I})_p = \overline{I} \otimes Z_p = \overline{I_p} = \overline{M_p a_p} \text{ for some } a_p \in A_p$$

= $\overline{a_p} M_p = (\overline{a_p} M_p \overline{a_p}^{-1}) \overline{a_p} = M_p' \overline{a_p}$.

Therefore, \bar{I} is a left M' ideal with right order M. $N(\bar{I}) = N(I)$ follows from $\{N(\bar{a})|a \in I\} = \{N(a)|a \in I\}$.

- ii) The proofs that $II^{-1} = M$ and $I^{-1}I = M'$ are given in [16; p192 Theorem 22.7].
- iii) $I^{-1} = \{a \in A | IaI \subset I\} = \{x \in A | Ix \subset M\}$ (See [16; p192 (22.6)]). By Definition 2.3, $I_p = M_p a_p$ for some $a_p \in A_p$ for each $p < \infty$. Therefore, $(I_p)^{-1} = \{x \in A_p | M_p a_p x \subset M_p\} = a_p^{-1} M_p$, which implies $I_p^{-1} = M_p' a_p^{-1}$ for all $p < \infty$. Thus we have proven that I^{-1} is a left M' ideal with right order M.

For the proof of $N(I^{-1}) = N(I)^{-1}$, see Theorem 24.5 [16; p212]. This completes the proof.

PROPOSITION 2.8. [Pizer] Let M be an order of level N' in A. Let $I_1, I_2, ..., I_H$ be a complete set of representatives of all the distinct left M ideal classes. Let M_j be the right order of $I_j, j = 1, 2, ..., H$. Then $I_j^{-1}I_1, ..., I_j^{-1}I_H$ is a complete set of representatives of all distinct left M_j ideal classes (for i = 1, 2, ..., H).

PROOF. See Proposition 2.13 and Proposition 2.15 [13].

3. Brandt matrices and Theta series

3.1 We now give the connection between modular forms and Quaternion algebras. Let Q(x) be a positive definite integral quadratic form in an even number of r = 2k variables. Integral means that $Q(x) \in Z$ for all $x \in Z^r$. Then $Q(x) = \frac{1}{2}x^tTx$ where $x^t = (x_1, x_2, ...x_r)$ and $T = (a_{ij})$ is a positive definite symmetric matrix with $a_{ij} \in Z$ and $a_{ii} \equiv 0 \mod 2$. In fact, T is the matrix of the bilinear form (x, y) = Q(x+y) - Q(x) - Q(y). T is called the matrix associated to Q(x).

DEFINITION 3.1. Let Q(x) and T be as above. The level of Q(x) T) is the least positive integer n such that nT^{-1} has integer entries with diagonal entries even integers. The discriminant of Q(x) is $(-1)^k \det(T)$.

PROPOSITION 3.2. Let I be a left M ideal for some order M of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ in a positive definite Quaternion algebra A over Q which is ramified precisely at one finite prime q and ∞ . Then the quadratic form N(x)/N(I) for $x \in I$ is a positive definite integral quadratic form with level N and discriminant N^2 where $N = q \prod_{i=1}^{d} p_i^{\nu(p_i)}$.

REMARK. What this means is the following. Let e_1, \dots, e_4 be any Z basis for I. Then $Q(x_1, \dots, x_4) = N(x_1e_1 + \dots + x_4e_4)/N(I)$ is a positive definite integral quadratic form with level N and discriminant N^2 . Since any other Z-basis of I is obtained from e_1, \dots, e_4 by operating on (e_1, \dots, e_4) by a matrix $U \in GL(4, Z) = \{S \in \operatorname{Mat}_{4\times 4}(Z) | \det(S) = \pm 1\}$, the level and the discriminant are independent of which particular basis we chose.

PROOF. Let Q(x) = N(x)/N(I). Since $A_{\infty} = A \otimes R$ is Hamilton's Quarternion, the norm form is positive definite by [11; p343]. Hence Q(x) is a positive definite form. Next, by the Definition 2.6, N(I)|N(x) for all $x \in I$. This implies Q(x) = N(x)/N(I) is integral.

We now need to show that Q(x) has level N and discriminant N^2 . Let S be the matrix associated to Q(x). As the level is a positive integer, we determine the level locally at all primes $< \infty$.

We start to consider the case $p \neq q$ first. By Definition 2.3, $I_p = M_p \beta$ for some $\beta \in A_p^{\times}$. By 2.1, $M_p = R_{\nu(p)}(L(p))$ for some nonnegative integer $\nu(p)$. Suppose e_1, e_2, e_3, e_4 is a basis of R_{ν} . Then $e_1\beta, e_2\beta, e_3\beta, e_4\beta$ gives a Z_p basis for I_p . Since $N(I_p) = N(\beta)$ (see Remark of Definition 2.6),

the
$$ij$$
-th entry of S is $Q(e_i\beta + e_j\beta) - Q(e_i\beta) - Q(e_j\beta)$

$$= \frac{1}{N(I_p)} (N(\beta)(N(e_i + e_j) - N(e_i) - N(e_j)))$$

$$\equiv N(e_i + e_j) - N(e_i) - N(e_j) = Tr(e_i\bar{e_j}) \mod Z_p^{\times}.$$

First consider the case, $\nu(p) > 0$. Let $\nu = \begin{cases} \frac{\nu(p)}{2} & \text{if } L(p) \text{ is unramified} \\ \nu(p) - 1 & \text{if } L(p) \text{ is ramified} \end{cases}$,

and L = L(p). Then $R_{\nu} = \mathcal{O}_L + \xi P_L^{\nu}$. Let $\mathcal{O}_L = Z_p + u Z_p$ for some u in L, so that \mathcal{O}_L is the ring of integers in L. Now we take $e_1 = 1, e_2 = u, e_3 = \xi \pi_L^{\nu}, e_4 = \xi \pi_L^{\nu} u$ as a Z_p basis of $M_p = R_{\nu}(L)$. Since $\overline{\xi \pi_L^{\nu}} = -\xi \pi_L^{\nu}$ and $\overline{\xi \pi_L^{\nu}} = -\xi \pi_L^{\nu} u$ where π_L is the prime element of \mathcal{O}_L (See [6]),

$$S = \begin{pmatrix} 2 & \mathrm{Tr}(u) & 0 & 0 \\ \mathrm{Tr}(u) & 2\mathrm{N}(u) & 0 & 0 \\ 0 & 0 & 2\mathrm{N}(\pi_L^{\nu}) & -\mathrm{N}(\pi_L^{\nu})\mathrm{Tr}(u) \\ 0 & 0 & -\mathrm{N}(\pi_L^{\nu})\mathrm{Tr}(u) & 2\mathrm{N}(\pi_L^{\nu}u) \end{pmatrix} \; .$$

Let $\delta = 4N(u) - Tr(u)^2$. Then

$$S^{-1} = \begin{pmatrix} 2 \mathrm{N}(u)/\delta & -\mathrm{Tr}(u)/\delta & 0 & 0 \\ -\mathrm{Tr}(u)/\delta & 2/\delta & 0 & 0 \\ 0 & 0 & 2 \mathrm{N}(\pi_L^{\nu}) \mathrm{N}(u)/\delta \mathrm{N}(\pi_L^{\nu})^2 & \mathrm{N}(\pi_L^{\nu}) \mathrm{Tr}(u)/\delta \mathrm{N}(\pi_L^{\nu})^2 \\ 0 & 0 & \mathrm{N}(\pi_L^{\nu}) \mathrm{Tr}(u)/\delta \mathrm{N}(\pi_L^{\nu})^2 & 2 \mathrm{N}(\pi_L^{\nu})/\delta \mathrm{N}(\pi_L^{\nu})^2 \end{pmatrix}$$

so the level and the discriminant of $Q(x) = \frac{N(x)}{N(I)}$ are $(4N(u) - Tr(u)^2)N(\pi_L^{\nu}) \mod Z_p^{\times}$ and $(4N(u) - Tr(u)^2)^2N(\pi_L^{\nu})^2 \mod Z_p^{\times}$, respectively.

If L(p) is an unramified extension field of Q_p , then $\nu = \frac{\nu(p)}{2}$ and $\Delta(u)$ is a quadratic nonresidue mod p in Q_p , whence $\Delta(u) = -(4N(u) - Tr(u)^2)$ is a unit in Z_p . On the other hand, if L(p) is a ramified extension field of Q_p , then $\nu = \nu(p) - 1$ and $u = \pi_L$. Hence $\Delta(\pi_L) = -(4N(\pi_L) - Tr(\pi_L)^2) \equiv p \mod Z_p^{\times}$.

In both cases, the level of $Q(x) \mod Z_p^{\times} = p^{\nu(p)}$ The discriminant of $Q(x) = \frac{N(x)}{N(I)}$ mod units of Z_p is $\operatorname{disc}(M_p) = \det(Tr(e_i\bar{e_j})) = \det(S) = (4N(u) - \operatorname{Tr}(u)^2)^2 N(\pi_L^{\nu})^2$. That is, the discriminant of $Q(x) \mod Z_p^{\times} = p^{2\nu(p)}$ Thus the level and the discriminant of Q(x) mod units of Z_p are $p^{\nu(p)}$ and $p^{2\nu(p)}$ respectively.

If $\nu(p) = 0$, M_p is a maximal order of A_p , in which case the level and discriminant of $\frac{N(x)}{N(I)}$ are both 1 mod units of Z_p (see [14; Proposition 2.11]).

In the case, p = q, the level and discriminant of $\frac{N(x)}{N(I)}$ mod units of \mathbb{Z}_p , q and q^2 , have been calculated by A. Pizer[14] and [19].

We conclude that the discriminant of Q(x) is $q^2 \prod_{p|p_1p_2\cdots p_d} p^{2\nu(p)}$ and the level of Q(x) is $q \prod_{p|p_1p_2\cdots p_d} p^{\nu(p)}$.

This completes the proof.

3.2 Let M be an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ in a Quaternion algebra A over Q ramified precisely at one finite prime q and ∞ . Let $I_1, I_2, ..., I_H$, H = H(N') be representatives of all distinct left M ideal classes. Let M_j be the right order of I_j and $e_j = |U(M_j)|$. We define

$$b_{ij}(n) = \frac{1}{\epsilon_j} \sum_{\alpha \in I_i^{-1} I_i, N(\alpha) = nN(I_i)/N(I_j)} 1 \quad \text{and} \quad b_{ij}(0) = \frac{1}{\epsilon_j} .$$

Then $b_{ij}(n) = \frac{1}{\epsilon_j}$ (the number of elements in $I_j^{-1}I_i$ whose norms are $nN(I_i)/N(I_j)$ for n > 0).

We are now in position to define the Brandt matrices associated with the primitive orders in Quaternion algebra. DEFINITION 3.3. Let the notation be as above. The Brandt matrices for $n \geq 0$ are defined by

$$B(n:N')=(b_{ij}(n)).$$

Thus B(n:N') is an $H \times H$ matrix with $b_{ij}(n)$ as the ij-th entry.

THEOREM 3.4. The entries of the Brandt matrix series,

$$\Theta(\tau:N') = \sum_{n=0}^{\infty} B(n:N')e^{2\pi i n \tau}$$

are modular forms of weight 2 on $\Gamma_0(N)$.

PROOF. Recall that $B(n:N')=(b_{ij}(n))$ where $b_{ij}(n)$ is just $\frac{1}{e_j}$ times the number of elements $\alpha\in I_j^{-1}I_i$ with $N(\alpha)=nN(I_i)/N(I_j)$ for n>0. Each entry of the Brandt matrix series, $\Theta(\tau:N')=(\theta_{ij}(\tau))$, is

$$\theta_{ij}(\tau) = \sum_{n=0}^{\infty} b_{ij}(n) e^{2\pi i n \tau}$$

$$= \frac{1}{e_j} \sum_{x \in I_j^{-1} I_i, N(x) = nN(I_i)/N(I_j)} e^{2\pi i n \tau}$$

$$= \frac{1}{e_j} \sum_{x \in I_j^{-1} I_i} e^{2\pi i \tau N(x)N(I_j)/N(I_i)}.$$

Let $Q(x) = N(x)N(I_j)/N(I_i)$. Since $I_j^{-1}I_i$ is a left ideal of M_j , it is a free Z module of rank 4. So identifying $I_j^{-1}I_i$ with Z^4 , we have $\theta_{ij}(\tau) = \frac{1}{e_j} \sum_{x \in Z^4} e^{2\pi i \tau Q(x)}$. By Theorem 20 of [9: VI22] and Proposition 3.2 above, this is a modular form of weight 2 on $\Gamma_0(N)$. Note that the spherical function with respect to Q(x) is 1 in the notation of Ogg [9: VI22] and the character associated to $\theta_{ij}(\tau)$ is 1, since by Proposition 6.12 $\operatorname{disc}(Q(x)) = N^2$ and Theorem 20 of [9: VI22] shows that $\epsilon(d) = (\frac{N^2}{d}) = 1$. This completes the proof.

Our final goal is to find the trace formula for the Brandt matrix B(n:N'), which will be the central role in determining the subspace

of modular forms generated by theta series (See [7]). First we need to determine the mass formula for M ideals. Let M be an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ on A and $I_1, I_2, ..., I_H$ be representatives of the left M ideal classes. Recall that the right order of I_i is given by $M_i = \{a \in A | I_i a \subset I_i\}$.

DEFINITION 3.5. Let the notations be as above. The mass formula for M ideals where M is an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ is given by

Mass
$$(M) = 2 \sum_{i=1}^{H} \frac{1}{|U(M_i)|}$$
.

THEOREM 3.6. Let M be an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ on A. Then

$$Mass(M) = \frac{1}{12}(q-1) \prod_{i=1}^{d} \delta(p_i)$$

where
$$\delta(p_i) = \begin{cases} (p_i^2 - p_i)p_i^{\nu(p_i) - 2} & \text{if } L(p_i) \text{ is unramified} \\ (p_i^2 - 1)p_i^{\nu(p) - 2} & \text{if } L(p_i) \text{ is ramified and } \nu(p_i) \ge 2 \\ (p_i + 1) & \text{if } L(p_i) \text{ is ramified and } \nu(p_i) = 1 \end{cases}$$

PROOF. Let M^0 be an order of level q in A which contains M. Then as in Proposition 24 and Proposition 25 [12; p685],

$$Mass(M) = Mass(M^0)([U(M^0): U(M)]).$$

By Eichler[2; p95] $\operatorname{Mass}(M^0) = \frac{1}{12}(q-1)$. Thus we need to find $[U(M^0):U(M)].$

By Corollary1 [18; p88],

$$[U(M^0):U(M)] = \prod_p [U(M_p^0):U(M_p)] \; .$$

Since M_p^0 is a maximal order, $M_p^0 = R_0(L(p))$ and $M_p = R_{\nu(p)}(L(p))$. Suppose $p \neq p_1, \dots, p_d$. Then $M_p^0 = M_p$, which implies $[M_p^0 : M_p] = 1$. Hence we consider $p = p_i$ for some $1 \leq i \leq d$. In the following calculations, $[R_i^{\times}: R_{i+1}^{\times}]$ is given in Proposition 2.4 and Proposition 2.7 [6]. If L(p) is unramified over Q_p , then

$$[U(M_p^0): U(M_p)] = [R_0^{\times} : R_2^{\times}] \cdots [R_{\nu(p)-1}^{\times} : R_{\nu(p)}^{\times}]$$
$$= (p^2 - p)p^2 \cdots p^2$$
$$= (p^2 - p)p^{\nu(p)-2}.$$

If L(p) is ramified over Q_p and $\nu(p) \geq 2$, then

$$\begin{split} [U(M_p^0):U(M_p)] &= [R_0^\times:R_1^\times][R_1^\times:R_2^\times]\cdots[R_{\nu(p)-1}^\times:R_{\nu(p)}^\times] \\ &= (p+1)(p-1)pp\cdots p \\ &= (p^2-1)p^{\nu(p)-2} \;. \end{split}$$

Finally, if L(p) is ramified over Q_p and $\nu(p) = 1$, then

$$[U(M_p^0):U(M_p)] = [R_0^\times:R_1^\times] = p+1 \; .$$

Hence

$$\operatorname{Mass}(M) = \frac{1}{12}(q-1) \prod_{i=1}^d \delta(p_i).$$

This completes the proof.

3.3 We need to set some notations. Let K be an imaginary quadratic number field and \mathcal{O} an order of K. Let A be a Quaternion algebra over Q ramified only at q and ∞ and M an order of level N' of A.

Analogously as in the local case, an optimal embedding \mathcal{O}/K into M/A is an Q injective homomorphism φ , such that $\varphi(K) \cap M = \varphi(\mathcal{O})$. Then we denote by $A(\mathcal{O}, M)$, the number of mod U(M) equivalence classes of optimal embeddings of \mathcal{O}/K into M/A. Note that $A(\mathcal{O}, M)$ depends only on the isomorphism classes of \mathcal{O} and M. For a prime l, denote by $C_l(\mathcal{O})$ the number of mod $U(M_l)$ equivalence classes of optimal embedding of \mathcal{O}_l/K_l into M_l/A_l (See 5.2 and Definition 5.1 in [6]). Note that $C_l(\mathcal{O})$ depends only on \mathcal{O}_l and the level of M_l .

Let M be an order of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ of A. Let $I_1, I_2, ..., I_H$ be a set of representatives of all the left M ideal classes and M_j be the right order of I_j for $1 \le j \le H$. THEOREM 3.6. [Pizer] Let the notation be as above. Then we have

$$\sum_{i=1}^{H} A(\mathcal{O}, M_i) = h(\mathcal{O}) \prod_{l \mid N} C_l(\mathcal{O}) .$$

where $h(\mathcal{O})$ is the class number of locally principal \mathcal{O} ideals and the product is over all primes l dividing N.

PROOF. See Theorem 4.8 [15; p192].

COROLLARY 3.7. [Pizer] In the notation of 3.3, let $a_i(\mathcal{O})$ denote the number of optimal embeddings of \mathcal{O}/K into M_i/A . Then

$$\sum_{i=1}^{H} \frac{a_i(\mathcal{O})}{\epsilon_i} = \frac{h(\mathcal{O})}{|U(\mathcal{O})|} \prod_{l|N} C_l(\mathcal{O})$$

where $e_i = |U(M_i)|$.

PROOF. See Corollary 4.10 [15; p192].

THEOREM 3.8. The trace of Brandt matrix B(n:N') is

$$tr(B(n:N')) = \sum_{s} \sum_{f} \frac{1}{2}b(s,f) \prod_{l \mid N} c(s,f,l) + \xi(\sqrt{n}) Mass(M)$$

where $\xi(\sqrt{n}) = \begin{cases} 1 & \text{if } n \text{ is a perfect square} \\ 0 & \text{otherwise} \end{cases}$

The meaning of s, f, b(s, f) and c(s, f, l) are as follows.

Let s run over all integers such that $s^2 - 4n$ is negative. Hence with some positive integer t and square free integer m, we can classify $s^2 - 4n$ by

$$s^{2} - 4n = \begin{cases} t^{2}m & m \equiv 1 \mod 4 \\ t^{2}4m & m \equiv 2, 3 \mod 4 \end{cases}$$

For each s, let f run over all positive divisors of t. Let $L = Q[x]/(\Phi_s(x))$ where $\Phi_s(x) = x^2 - sx + n$ and ξ is the canonical image of x in L. Then L

is an imaginary quadratic number field and ξ generates the order $Z + Z\xi$ of L. For each f, there is a uniquely determined order \mathcal{O}_f containing $Z + Z\xi$ as a submodule of index f. Let $\Delta(\mathcal{O}_f) = s^2 - 4n/f^2$. Let $h(\Delta(\mathcal{O}_f))$ (resp. $\omega(\Delta(\mathcal{O}_f))$ denote the number of locally principal \mathcal{O}_f ideals(resp. $\frac{1}{2}|U(\mathcal{O}_f)|$). Then $b(s,f) = \frac{h(\Delta(\mathcal{O}_f))}{\omega(\Delta(\mathcal{O}_f))}$.

Let M be an order of level N' of B. Then c(s, f, l) is the number of $M_l^{\times} = (M \otimes Z_l)^{\times}$ equivalence classes of optimal embeddings of $\mathcal{O}_f \otimes Z_l$ into $M \otimes Z_l$. In other words, let $Z + Z\alpha$ be the maximal order of L, then $\mathcal{O}_f \otimes Z_l = Z_l + Z_l l^m \alpha$ and $(s^2 - 4n)/f^2 \equiv l^{2m} \Delta(\alpha) \mod (Z_l^{\times})^2$. Since c(s, f, l) is the number of $M_l^{\times} = R_{\nu(l)}^{\times}(L(l))$ (See 3.3) equivalence classes of optimal embeddings of $l^m \alpha$ into $M_l = R_{\nu(l)}(L(l))$, it is easy to find c(s, f, l) in Theorem 5.19, 5.30, 5.31 and Table 5.28 in [6] or [1] if s, n and f are given.

REMARK. $h(\Delta(\mathcal{O}_f))$ can be expressed in terms of 'standard' class number of maximal orders (see Corollary 3.11). It is well known that $w(\Delta(\mathcal{O}_f)) = 1$ with two exceptions, w(-4) = 2 and w(-3) = 3 (see [19; p267]).

PROOF. Recall that $B(n:N') = (b_{ij}(n))$ where $b_{ij}(n) = \frac{1}{e_i} \sum_{\alpha \in I_j^{-1}I_i, N(\alpha) = nN(I_i)/N(I_j)} 1$. Then

$$\operatorname{tr}B(n:N') = \sum_{i=1}^{H} b_{ii}(n)$$

$$= \sum_{i=1}^{H} \frac{1}{e_i} \sum_{\alpha \in I_i^{-1}I_i, N(\alpha) = nN(I_i)/N(I_i)} 1$$

$$= \sum_{i=1}^{H} \frac{1}{e_i} \sum_{\alpha \in M_i, N(\alpha) = n} 1.$$

If n is a perfect square, then $n=a^2$ for some $a \in Z$. Since M_i contains Z for each i and $N(\pm a)=a^2=n$, then $\sum_{\alpha\in M_i,N(\alpha)=n}1=2$ for each $1\leq i\leq H$. Hence

$$\sum_{i=1}^{H} \frac{1}{e_i} \sum_{\alpha \in M_i, N(\alpha) = n} 1 = 2 \sum_{i=1}^{H} \frac{1}{e_i} = \text{Mass}(M).$$

Now if n is not a perfect square in Q, then let $a_i(s, n)$ denote the number of $\alpha \in M_i$ with $\operatorname{tr}(\alpha) = s$, $\operatorname{N}(\alpha) = n$, and with $x^2 - sx + n$ irreducible over Q. Then $\sum_{\alpha \in M_i, \operatorname{N}(\alpha) = n} 1 = \sum_s a_i(s, n)$ where the sum is over all integers, s such that $s^2 - 4n < 0$.

$$\sum_{i=1}^{H} \frac{1}{e_i} \sum_{s} a_i(s, n) = \sum_{i=1}^{H} \sum_{s} \frac{a_i(s, n)}{e_i}$$
$$= \sum_{s} \sum_{i=1}^{H} \frac{a_i(s, n)}{e_i}.$$

Let $K = Q[x]/(x^2 - sx + n)$ and let x' be a root of $x^2 - sx + n$ in K. Then $a_i(s,n)$ is equal to the number of isomorphisms ϕ of K into A with $\phi(x') \in M_i$. Let $\mathcal{O}_0 = Z + Zx'$ and \mathcal{O}_1 be an order of K with $\mathcal{O}_0 \subset \mathcal{O}_1 \subset K$. If ϕ is an optimal embedding of \mathcal{O}_1/K into M_i/A , then $\phi(\mathcal{O}_1) = M_i \cap \phi(K)$ and $x \in \mathcal{O}_0 \subset \mathcal{O}_1$ imply $\phi(x') \in M_i$. Thus every optimal embedding of some order $\mathcal{O}_1, \mathcal{O}_0 \subset \mathcal{O}_1 \subset K$ into M_i/A is an isomorphism which is counted in $a_i(s,n)$. Conversely, if $\phi: K \to A$ is an isomorphism with $\phi(x') \in M_i$ then $M_i \cap \phi(K) = \mathcal{O}_1'$ is an order of $\phi(K)$ containing $\phi(x')$. Hence $\phi^{-1}(\mathcal{O}_1')$ is an order of K which contains \mathcal{O}_0 and such that ϕ gives an optimal embedding of $\phi^{-1}(\mathcal{O}_1')$ into M_i . Thus $a_i(s,n) = \sum_{\mathcal{O}_1 \supset \mathcal{O}_0} a_i(\mathcal{O}_1)$, which we sum over all orders \mathcal{O}_1 of K which contain \mathcal{O}_0 , and $a_i(\mathcal{O}_1)$ is as in Corollay 3.7. Hence we have

$$\sum_{i=1}^{H} \frac{a_i(s,n)}{\epsilon_i} = \sum_{\mathcal{O}_1 \supset \mathcal{O}_0} \sum_{i=1}^{H} \frac{a_i(\mathcal{O}_1)}{\epsilon_i}$$
$$= \sum_{\mathcal{O}_1 \supset \mathcal{O}_0} \frac{h(\mathcal{O}_1)}{|U(\mathcal{O}_1)|} \prod_{l \mid N} c_l(\mathcal{O}_1).$$

by Corollary 3.7.

Now $\Delta(\mathcal{O}_0) = s^2 - 4n$ and $\Delta(\mathcal{O}_1) = (s^2 - 4n)/f^2$ where $(s^2 - 4n)/f^2 \equiv 0$ or 1 mod 4 and f is a positive integer. Taking into account the fact that K must be imaginary quadratic and that an order of K is uniquely determined by its discriminant, we set $h(\Delta(\mathcal{O}_1)) = h(\mathcal{O}_1), \omega(\Delta(\mathcal{O}_1)) = h(\mathcal{O}_1)$

 $\frac{1}{2}|U(\mathcal{O}_1)|$ and $c(s,f,l)=c_l(\mathcal{O}_1)$. Then

$$\sum_{s} \sum_{i=1}^{H} \frac{a_i(s,n)}{e_i} = \sum_{s} \sum_{\mathcal{O}_1 \supset \mathcal{O}_0} \frac{h(\mathcal{O}_1)}{|U(\mathcal{O}_1)|} \prod_{l|N} c_l(\mathcal{O}_1)$$
$$= \sum_{s} \sum_{f} \frac{1}{2} b(s,f) \prod_{l|N} c(s,f,l) .$$

Therefore,

$$tr(B(n:N')) = \sum_{s} \sum_{f} \frac{1}{2}b(s,f) \prod_{l|N} c(s,f,l) + \xi(\sqrt{n}) Mass(M)$$

LEMMA 3.9. Let K be an imaginary quadratic number field. Let \mathcal{O}_K be an order of K of discriminant Δ and let \mathcal{O}' be the suborder of \mathcal{O}_K of index f. Then

$$\frac{h(\mathcal{O}_K')}{\omega(\mathcal{O}_K')} = \frac{h(\mathcal{O}_K)}{\omega(\mathcal{O}_K)} f \prod_{l \mid f} (1 - \{\frac{\Delta}{l}\}\frac{1}{l})$$

where $\{\frac{\Delta}{l}\}=\left\{ \begin{array}{ll} 0 & \text{if } l^2|\Delta \text{ and } l^{-2}\Delta\equiv 0 \text{ or } 1 \mod 4 \\ (\frac{\Delta}{l}) & \text{the Kronecker symbol otherwise} \end{array} \right.$

PROOF. See Lemma 4.16 [15; p197]

COROLLARY 3.10. Let K be an imaginary quadratic number field. Let \mathcal{O} be the maximal order of K and O' a suborder of index f. Then

$$\frac{h(\mathcal{O}_K')}{\omega(\mathcal{O}_K')} = \frac{h(\mathcal{O}_K)}{\omega(\mathcal{O}_K)} f \prod_{l \mid f} (1 - (\frac{K}{l}) \frac{1}{l})$$

where

$$(\frac{K}{l}) = \left\{ \begin{array}{ll} 1 & \text{if l splits in K} \\ 0 & \text{if l ramifies in K} \\ -1 & \text{if l remains prime in K} \end{array} \right. .$$

is the Kronecker symbol. Note that $h(\mathcal{O}_K)$ is the standard class number of K.

PROOF. See Corollary 4.17 [15; p197].

3.4 Let L and L' be two quadratic extensions of Q_p contained in A_p . By an embedding we mean an injective Q_p (or Z_p) homomorphism.

Assume that $L \subset B$ and let \mathcal{O}' be an order of L'. We say that \mathcal{O}' is embeddable in $R_{\nu}(L)$ if there exists an embedding ϕ of L' into B such that $\phi(\mathcal{O}') \subset R_{\nu}(L)$.

DEFINITION 3.11. Define $\mu(L, L')$ to be the nonegative integer or ∞ characterized by the property : $\mathcal{O}_{L'}$ is embeddable in $R_{\nu}(L)$ if and only if $\nu \leq \mu(L, L')$.

Obviously, $\mu(L, L')$ exists and depends only on discriminants of L and L'. Also if discriminants of L and L' are equal, then $\mu(L, L') = \mu(L', L) = \infty$. For the details, see [6].

THEOREM 3.12. Let A be a rational Quaternion algebra ramified precisely at one finite prime q and ∞ and M be an order of A of level $N' = (q; L(p_1), \nu(p_1); ..., L(p_d), \nu(p_d))$ where $2 \nmid \prod_{i=1}^d p_i$. Then the class number of an order M is

$$\begin{split} H(N') = &Mass(M) + \frac{1}{4}(1 - (\frac{-4}{q})) \prod_{l \mid \frac{N}{q}} C(l) \\ &+ \frac{1}{3}(1 - (\frac{-3}{q})) \prod_{l \mid \frac{N}{q}} C'(l) \;, \end{split}$$

where $N = q \prod_{i=1}^{d} p_i^{\nu(p_i)}$,

$$C(l) = \begin{cases} 2 & \text{if } \mu(Q_l(\sqrt{-1}), L(l)) = 1 \\ 2 & \text{if } \mu(Q_l(\sqrt{-1}), L(l)) = \infty \\ 0 & \text{otherwise} \end{cases}$$

$$C'(l) = \begin{cases} c(1,1,l) & \text{if} \quad l \neq 3 \\ 0 & \text{if} \quad l = 3, \quad \mu = 0 \\ 1 & \text{if} \quad l = 3, \quad \mu = 2 \text{ and } \nu(3) = 1 \\ 2 & \text{if} \quad l = 3, \quad \mu = 2 \text{ and } \nu(3) = 2 \\ 0 & \text{if} \quad l = 3, \quad \mu = 2 \text{ and } \nu(3) \geq 3 \\ 1 & \text{if} \quad l = 3, \quad \mu = \infty \text{ and } \nu(3) = 1 \\ 2 & \text{if} \quad l = 3, \quad \mu = \infty \text{ and } \nu(3) = 2 \\ 6 & \text{if} \quad l = 3, \quad \mu = \infty \text{ and } \nu(3) \geq 3 \end{cases}$$

and

$$c(1,1,l) = \begin{cases} & 2 \quad \mu(Q_l(\sqrt{-3}),L(l)) = 1 \text{ and } \quad \nu(l) = 1 \\ & 2 \quad \mu(Q_l(\sqrt{-3}),L(l)) = \infty \\ & 0 \quad \text{otherwise} \end{cases}$$

Here the product is over all distinct primes l dividing $\frac{N}{q}$ and $(\frac{*}{*})$ is the Kronecker symbol. In particular, $(\frac{-3}{3}) = (\frac{-4}{2}) = 0$ and $(\frac{-3}{2}) = -1$. Also, $\mu = \mu(L(3), Q_3(\sqrt{-3})).$

PROOF. From the definition of the Brandt matrix, we see that H(N')= tr(B(1:N')) (see Remark 2.25 [14]). Let us calculate tr(B(1:N')). By Theorem 3.9, if M is an order of level N', then

$$tr(B(1:N')) = \sum_{s} \sum_{f} \frac{1}{2}b(s,f) \prod_{l|N} c(s,f,l) + \text{Mass}(M)$$
.

Here, we need to explain b(s, f) and c(s, f, l) first. Let η be a canonical image of x in $Q[x]/(x^2 + sx + 1)$. Then for each f, there is uniquely determined order \mathcal{O}_f containing $Z + Z\eta$ as a submodule of index f. Let $h(\mathcal{O}_f)(w(\mathcal{O}_f))$ denote the number of locally principal \mathcal{O}_f ideals (resp. $\frac{1}{2|U(\mathcal{O}_f)|}$). Then $b(s,f) = \frac{h(\mathcal{O}_f)}{w(\mathcal{O}_f)}$ Also c(s,f,l) is the number of $M_l^{\times} =$ $R_{
u(l)}^{\times}(L(l))$ (see Definition 2.1) equivalence classes of optimal embeddings of $l^m \alpha$ into $M_l = R_{\nu(l)}(L(l))$ where $Z + Z \alpha$ is the maximal order of $Q[x]/(x^2 + sx + 1)$ and $\mathcal{O}_f \otimes Z_l = Z_l + Z_l l^m \alpha$.

As $Q[x]/(x^2+sx+1)$ is a quadratic imaginary number field, $s^2-4 < 0$. Hence, there are three choices for s. Namely, s=0 or 1 and -1. However, since $Q[x]/(x^2+x+1) \simeq Q[x]/(x^2-x+1) \simeq Q(\sqrt{-3})$, it suffices to consider only the cases, s=0 and 1.

i) case s=0. (i.e. $s^2-4n=-4$). Let $K=Q[x]/(x^2+1)\simeq Q(\sqrt{-1})$. Then $Z+Z\sqrt{-1}$ is the maximal order of K. So f=1. Let $\mathcal{O}=Z+Z\sqrt{-1}$ for convenience. Now we need to find b(0,1) of \mathcal{O} .

By [23; p267], the class number of \mathcal{O} is 1 and the number of units in \mathcal{O} is 4. That is, $h(\mathcal{O}) = 1$ and $w(\mathcal{O}) = \frac{1}{2}|U(\mathcal{O})| = 2$. Hence $b(0,1) = \frac{h(\mathcal{O})}{w(\mathcal{O})} = \frac{1}{2}$.

Next we need to calculate c(s, f, l) for l|N.

First, if l = q, then $c(0, 1, q) = (1 - (\frac{-4}{q}))$ is given in Proposition 6 [4; p102].

Second, consider $l|\frac{N}{q}$. $\mathcal{O}_1 \otimes Z_l = (Z + Z\sqrt{-1}) \otimes Z_l = Z_l + Z_l\sqrt{-1}$.

 $\Delta(\sqrt{-1}) = -4$ implies that $Z_l + Z_l\sqrt{-1} \simeq Z_l \oplus Z_l$ or $Z_l + Z_l\sqrt{-1}$ is the ring of integers in a field $Q_l(\sqrt{-1})$.

If $Z_l + Z_l \sqrt{-1} \simeq Z_l \oplus Z_l$, then since L(l) is a field, by Theorem 3.10 in [6] $\mu(Q_l(\sqrt{-1}), L(l)) = 0$ or 1. By Theorem 5.30 and 5.31 in [6], c(0,1,l), the number of $M_l^{\times} = R_{\nu(l)}^{\times}(L(l))$ equivalence classes of optimal embeddings of $\sqrt{-1}$ into $M_l = R_{\nu(l)}(L(l))$ is 2 if L(l) is ramified and $\nu(l) = 1$, i.e. $\mu(Q_l(\sqrt{-1}), L(l)) = 1$ and $\nu(l) = 1$. Otherwise, by Theorem 5.19 and Table 5.28 in [6] c(0,1,l) = 0. If, on the other hand, $Z_l + Z_l \sqrt{-1}$ is the ring of integers in a field $Q_l(\sqrt{-1})$, then since $2 \nmid \frac{N}{q}, l \nmid \Delta(\sqrt{-1}) = -4$. So $Q_l(\sqrt{-1})$ is unramified. By Theorem 5.19 in [6], c(0,1,l) = 2 if L(l) is unramified, that is $\mu(Q_l(\sqrt{-1}), L(l)) = \infty$. Otherwise, by Theorem 5.19 and Table 5.28 in [6] c(0,1,l) = 0.

Hence

$$c(0,1,l) = \begin{cases} 2 & \text{if } \mu(Q_l(\sqrt{-1}),L(l)) =: 1 \quad \text{and } \nu(l) = 1 \\ 2 & \text{if } \mu(Q_l(\sqrt{-1}),L(l)) =: \infty \\ 0 & \text{otherwise} \end{cases}$$

ii) case s=1. (i.e. $s^2-4n=-3$). Let $K=Q[x]/(x^2+x+1)=Q(\sqrt{-3})$. Then $Z+Z\sqrt{-3}$ is the maximal order of K. Hence, f=1. Let $\mathcal{O}=Z+Z\sqrt{-3}$ for convenience.

The class number of \mathcal{O} is 1 and the number of units in \mathcal{O} is 6 (see [19; p267]). Hence $b(1,1) = \frac{h(\mathcal{O})}{w(\mathcal{O})} = \frac{1}{3}$ and we obtain c(1,1,1) as in the theorem by the table 5.28 in [6].

Again, we need to calculate c(s, f, l) for l|N.

First, if l=q, then $c(1,1,q)=(1-(\frac{-3}{q}))$ was calculated by Eichler [2; p102].

Second, if $l|\frac{N}{q}$ and $l \neq 3$, then c(1,1,l) is the number of $M_l^{\times} = R_{\nu(l)}^{\times}(L(l))$ equivalence classes of optimal embeddings of $\sqrt{-3}$ into $M_l = R_{\nu(l)}(L(l))$.

Since $\Delta(\sqrt{-3}) = -12$, $Q_l(\sqrt{-3})$ is either unramified or isomorphic to $Q_l \oplus Q_l$.

Analogous to the case i), by Theorem 5.19, 5.30, 5.31 and Table 5.28 in [6], c(1,1,l) is calculated as in the theorem.

Finally, if $l|\frac{N}{q}$ and l=3, since $\Delta(\sqrt{-3})=-12=-3\cdot 4$, $Q_l(\sqrt{-3})$ is ramified. By table 5.28 and Theorem 5.19 in [6],

$$c(1,1,3) = \begin{cases} 0 & \text{if} \quad \mu = 0\\ 1 & \text{if} \quad \mu = 2 \text{ and } \nu(3) = 1\\ 2 & \text{if} \quad \mu = 2 \text{ and } \nu(3) = 2\\ 0 & \text{if} \quad \mu = 2 \text{ and } \nu(3) \ge 3\\ 1 & \text{if} \quad \mu = \infty \text{ and } \nu(3) = 1\\ 2 & \text{if} \quad \mu = \infty \text{ and } \nu(3) = 2\\ 6 & \text{if} \quad \mu = \infty \text{ and } \nu(3) \ge 3 \end{cases}$$

where $\mu = \mu(L(3), Q_3(\sqrt{-3}))$ (see Definition 3.3).

Combining i) and ii), we obtain that

$$\begin{split} &\sum_{s} \frac{1}{2} \sum_{f} b(s,f) \prod_{l \mid N} c(s.f.l) \\ = &\frac{1}{2} b(0,1) \prod_{l \mid N} c(0,1,l) \\ &+ \frac{1}{2} b(1,1) \prod_{l \mid N} c(1,1,l) + \frac{1}{2} b(-1,1) \prod_{l \mid N} c(-1,1,l) \\ = &\frac{1}{4} (1 - (\frac{-4}{q})) \prod_{l \mid \frac{N}{q}} C(l) + \frac{1}{3} (1 - (\frac{-3}{q})) \prod_{l \mid \frac{N}{q}} C'(l). \end{split}$$

References

- J. Brezinski, On automorphisms of quaternion algebras, J. Reine Angew. Math 403 (1990), 166-186.
- M. Eichler, Lecture notes in Mathematics, No 320, Springer Verlag Berlin/New York.
- H. Hijikata, Explicit formula of the traces of the Hecke operators for Γ₀(N), J of Math. Soc. Japan 26 (1974), 56-82.
- 4. H. Hijikata, A. Pizer and T. Shemanske, The basis problem for modular forms on $\Gamma_0(N)$, Memoirs of the American Mathematical Society 418 (1989).
- H. Hijikata, A. Pizer and T. Shemanske, Orders in Quaternion Algebras, J Reine Agnew. Math, 394 (1989), 59-106.
- S. Jun, An optimal embeddings in Quaternion algebra and its application, Thesis,, University of Rochester 1991.
- 7. S. Jun, Representatibility of modular forms by theta series, preprint.
- 8. T. Lam, The algebraic theory of quadratic forms, Benjamin, New York, 1971.
- 9. A. Ogg. Modular forms and Dirichlet series, Benjamin, New York, 1971.
- 10. O. O'Meara, Introduction to quadratic forms, Springer Verlag, New York, 1971.
- 11. A. Pizer, On Arithmetic of Quaternion Algebras, Acta Arith 31 (1976), 61-89.
- 12. A. Pizer, On Arithmetic of Quaternion Algebra II, J of Math. Soc. Japan 28 (1976), 676-688.
- 13. A. Pizer, The action of the canonical involution on modular forms of weight 2 on $\Gamma_0(M)$., Math. Ann 226 (1977), 99-116.
- 14. A. Pizer, An algorithm for computing modular forms on $\Gamma_0(N)$, J. of Algebra 64 (1980), 340-390.
- A. Pizer, Theta series and modular forms of level p²M, Compositio Math 40 (1980), 177-241.

- 16. I. Reiner, Maximal order, Academic Press, New York, 1975.
- K. Roggenkamp, Lattice over orders I, Lecture Notes in Mathematics 115 (1970), Springer Verlag, New York.
- 18. A. Weil, Basic number theory, Springer Verlag, Berlin/New York, 1967.
- 19. E. Weiss, Algebraic number theory, McGraw Hill, New York, 1963.

Department of Applied Math. Konkuk Univ. 322 Choongju 380-701, Korea