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THETA SERIES BY PRIMITIVE ORDERS

SUNGTAE JUN

ABSTRACT. With the theory of a certain type of orders in a Quaternion
algebra, we construct Brandt matrices and theta series. As a application,
we calculate the class number of a certain type of orders in a Quaternion
algebra with the trace formula of Brandt matrices.

1. Introduction

It is well known that there is a close connection between the theory
of orders in Quaternion algebra and modular forms of T'o(N) [2], [4].
There are three types of orders in Quaternion algebra (See Definition
2.1 below). Among them, two types of orders, so called, special orders
were studied in [4]. The remaining type was studied in [1] and [6], in
different ways. As a cousequence of [6], in this paper we define theta
series associated with a certain type of orders in a rational Quaternion
algebra. With the results of [(], we obtain a trace formula for the Brandt
matrices, which will play a central role in determining the subspace of
cusp forms generated by the theta series (See [7]). For an immediate ap-
plication of trace formula, we obtain an explicit formula for class number
of primitive orders.

2. Primitive orders in Quaternion Algebra

Let @ be the rational number field and Z be the ring of integers in Q.
For a prime p of @, we denote as @, the completion of @ at p, and for
p < 0o, denote as Z, the ring of integers in (). Let A be a Quaternion
algebra over Q5. A prime p is said to ramify in 4 if 4, = AR Q) 15
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a division algebra over @}, (see [8; p154]). Otherwise A, is isomorphic
to Mat(2, @,) over @, and p is said to spiit in A (see [18; p184]). A
lattice on A is a finitely generated Z submodule of A which contains a
basis of A over Q. Since Z is a principal ideal domain, a lattice is a
free Z module of rank 4. An order M of A is a lattice on A which is a
subring containing the identity. There is a local-global correspondence
for lattices which goes as follows [17; chapterIV]: to a lattice L on A,
we associate the collection of lattices L, = L ®z Z, of A,, one for each
p < oco. Conversely, if we have a collection of lattices {L(p)lp < oo}
on A,, one for each p < oo and if there exists a lattice M on A such
that L(p) = M, for almost all p, i.e. for all but a finite number of p,
then there exists a unique lattice L on A such that L(p) = L, for all
p < oo. Replacing the word “lattice” by “order” above, we obtain the
local-global correspondence for orders. An order of A(resp. Ap) is said
to be maximal if it is not properly contained in any other order of A(resp.
Ap) where p is a finite prime.

DEFINITION 2.1. An order M of A is said to be primitive if

1) for all finite ramified primes p of A, M, contaias a subring which
is Z, isomorphic to the ring of integers in some quadratic field
extension of Q.

2) for all finite split primes p of A, M, contains a subring which
is Z, isomorphic to the ring of integers in some quadratic field
extension of @, or isomorphic to Z, @ Z, in quadratic extension

Qp @ Qp of Q.

REMARK. For all ramified primes p of A, pritimitive orders M of A4
were studied by Hijikata, Pizer and Shemanske [4]. Also, for all finite
split primes p of A, orders M, of A, which contain a subring which is
Zp-isomorphic to Z, & Z, were studied by Hijikata [3].

2.1 Now let us restrict to the case that really interests us at present.
For the remainder of this paper, A will be a rational QQuaternion algebra
ramified precisely at one finite prime ¢ and co. Thus A = A &g Ris
Hamilton’s Quaternion algebra [10; p343].

If R is an order of A, which contains Of, the ring of integers in a
quadratic field extension L of @, for p # g, then the possiblities for R
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are:
R2y (L) = Op + £P} if L is unramified
R=14 R,(L)=0p +(1+&)P;~" if L is ramified
Ro(L)=Op + (1 - &Py if L is ramified

for some nonnegative integer v where 4, = L 4 €L and Py, is the prime

ideal of Op(See [6]).

DEFINITION 2.2. Let A be a rational Quaternion algebra which is
ramified precisely at one finite prime ¢ and oo. For finite odd primes
P1,P2, .- Pd # ¢, an order of M of A is said to have level (g; L(p1), v(p1);
L(p2),v(p2);..., L(pa), v(pa)) if

i) M, is the maximal order of A4,.
i1) for a prime p # ¢, there exists a quadratic field extension L(p)
of J, and a nonnegative integer v(p) (which is even if L(p) is
unramified) such that M, = R, (L(p))
ni) v(pi) >0for:=1.2,....d and v(p) = 0 for p # ¢,p1,...,pa- (i€
M, is a maximal order of A, if p # p1,p2, ..., pa)-

REMARK. For notational convenience, we put N' = (¢; L(p1 ), v(p1 );
s L(pa), v(pa)) and N = ¢ Hf:l 1)‘.’(1”] throughout this paper.

1)

DEFINITION 2.3. Let A be an order of level N’ in A. A left M ideal
I is a lattice on A such that I, = M,a, for some (q, € A7) for all
p < co. Two left M ideals I and J are said to belong to the same class
if I = Ja for some a € 4*. One has the obvicus analogous definitions

for right M ideals.

DEFINITION 2.4. The class number of left ideals for any order M of
level
N' = (¢; L(p1),v(p1); ..., L(pa), v(pq)) is the number of distinct classes
of such ideals. We denote this class number by H(N').

DEFINITION 2.5. Let I be a (left or right) M ideal for some order M
of level N’ in A. The left order of I = {a € Alal C I} and the right
order of [ = {a € A|la € I}.

DEFINITION 2.6. The norm of an ideal, denoted by N([), is the posi-
tive rational number which generates the fracticnal ideal of Q generated
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by {N(a)la € I}. The conjugate of an ideal I, denoted by I, is given
by I = {a|a € I}. The inverse on an ideal, denoted by I~!, is given by
I7' ={a € A|lal C I}.

REMARK. Locally, if I, = M,a, for some a, € A;f, then we define
N(Ip) = N(ap) mod Z).

Note: If we have two ideals I and J with right order of I equal to the
left order of J, then I.J (= all finite sums Eikef,jke Jtkgr) with op € 1
and jx € J) is an ideal with left order equal to the left order of I and
right order equal to right order of J (see [16; p210]).

PROPOSII‘ION 7. Let M be an order of level N' = (¢; L(p1),v(p1);
s L(pa), v(pa)). Let I be a left M ideal with right crder M'. Then

i) I is a left M' ideal with right order M and N(I) = N{I).
i) II7' =M and I7'] = M.
iii) 171 is a left M' ideal with right order M and N(I7') = N(I)™!

PROOF. i) By Definition 2.5, it is clear that I is a Z lattice. Further-
more,

(D), =I® Z, = I, = Mya, for some a, € 4,
=ap M, = (?Z-;TAII,'CTP“I)E; - M;,a'; ‘

Therefore, I is a left M’ ideal with right order M. N(I) = N(I) follows
from {N(a)la € I} = {N(a)|a € I}.

ii) The proofs that II=' = M and I"'] = M’ are given in [16; p192
Theorem 22.7].

i) I7' = {a € A|lal C I} = {x € A|Ix C M} (See [16; p192 (22.6)}).
By Definition 2.3 I,, = 7\[,,(1,, for some a, € A, for each p < oc.
Therefore, (I,,) o Mpya,z C M} = a, ]Up, which 1mplies
Ip” = M,a ~1 for dll p < o0. Thus we have proven that I71is aleft M’
ideal W)th r]ght order M.

For the proof of N(I7!) = N(I)™!, see Theorem 2.5 [16; p212]. This
completes the proof.
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PROPOSITION 2.8. [Pizer] Let M be an order of level N’ in A. Let
Ii, Iz, ..., Iy be a complete set of representatives of all the distinct left
M ideal classes. Let M; be the right order of Ij,j = 1,2,....,H. Then
Ij"lll, ...,I]-_IIH is a complete set of representatives of all distinct left
M; ideal classes (fori=1.2,..... H).

PROOF. See Proposition 2.13 and Proposition 2.15 [13].

3. Brandt matrices and Theta series

3.1 Wenow give the connection between modular forms and Quater-
nion algebras. Let Q(x) be a positive definite integral quadratic form in
an even number of r = 2k variables. Integral means that Q(x) € Z for all
x € Z". Then Q(z) = %.T’T;r where ! = (z1,29,...7,) and T = (a;;) is a
positive definite symmetric matrix with ¢;; € Z and ¢;; =0 mod 2. In
fact, T is the matrix of the bilinear form (z,y) = Q(z+y)~Q(2)— Q(y).
T i1s called the matrix associated to Q(x).

DEFINITION 3.1. Let Q(x) and T be as above. The level of Q(x) T)
is the least positive integer n such that n7T~! has integer entries with
diagonal entries even integers. The discriminant of Q(z) is (—=1)*det(T).

PROPOSITION 3.2. Let I be a left M ideal for some order M of level
N' = (¢ L(p1),v(p1); ... L(pa), v(p4)) in a positive definite Quaternion
algebra A over () which is ramified precisely at one finite prime ¢ and
oo. Then the quadratic formm N(a)/N(I) for 2 € I is a positive definite
integral quadratic form with level N and discriminant N? where N =

d v(pi)
QHz:]Pi(p .

REMARK. What this means is the following. Let e1,--- ¢4 be any Z
basis for I. Then Q(z1, -+ ,a4) = N(x1e1 + -+ + 24e4)/N(I) is a posi-
tive definite integral quadratic form with level N and discriminant N2,
Since any other Z-basis of I is obtained from ey, - - ,e4 by operating on
(e1, -+ ,eq)byamatrix U € GL(4,Z) = {S € Matyx4(Z)|det(S) = %1},
the level and the discriminant are independent of which particular basis
we chose.
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PROOF. Let Q(z) = N(z)/N(I). Since Ac = A ® R is Hamilton’s
Quarternion, the norm form is positive definite by [11; p343]. Hence
Q(z) is a positive definite form. Next, by the Definition 2.6, N(I)|N(z)
for all z € I. This implies Q(z) = N(z)/N(I) is integral.

We now need to show that Q(z) has level N and discriminant N2
Let S be the matrix associated to Q(x). As the level is a positive integer,
we determine the level locally at all primes < oo.

We start to consider the case p # ¢ first. By Definition 2.3, I, = M,/
for some 8 € A). By 2.1, M, = R,(,)(L(p)) for some nonnegative integer

v(p). Suppose €1,€3,€3,€4 1s a basis of R,. Then €18, €23, e308, €413 gives
a Z, basis for I,. Since N(I,) = N(3) (see Remark of Definition 2.6),

the ¢j-thentry of Sis Qe+ ¢;08) — Q(eif) — Qle;3)

(N(B)N(ei+e5) — N(ei) — N(ej)))

~ N(L,)
= N(e; +¢;) — N(ei) — N(ej) = Tr(e ;) mod Z;

vip)

First consider the case, v(p) > 0. Letv = { 2 : . .
v(p) — 1if L(p) is ramified ,

and L = L(p). Then R, = Op + £Pf. Let O = Z, + uZ, for some u
in L, so that Oy, is the ring of integers in L. Now we take e; = 1,¢y =

if L(p) is unramified

u,e3 = €ny,eq = Enfu as a Z, basis of M, = R,(L). Since _5—771"_ = —{ny
and éx¥u = —Ex%u where 7y, is the prime element of Op (See [6]),
2 Tr(w) 0 (i
g = Tr(u) 2N(u) 0 0
0 0 2N(=77) —N(7})Tr(u)
0 0 —N(n7)Tr(u) 2N(7fu)

Let § = 4N(u) — Tr(u)?. Then

2N(u)/6  —Tr(u)/é ] 0
sl —Tr(u)/é 2/6 0 0
- 0 0 2N(7rZ)N(u)/6N(7rZ)2 N(?rZ)Tr(u)/éN(nZ)"’

0 0 N(m¥)Tr(u)/EN(xY)? 2N(m¥)/6N(m¥ )?
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so the level and the discriminant of Q(z = 11\\],((11) are (4N(u) — Tr(u)?)N
(r7) mod Z) and (4N(u) — Tr(u)*)?N(7x¥)? mod Z), respectively.

If L(p) is an unramified extension field of Q,. then v = 5—(211 and Alu)
1s a quadratic nonresidue mod p in @p, whence A{u) = —(4N(u)—Tr(u)?)
1s a unit in Z,. On the other hand, if L(p) is a ramified extension field
of @y, then v = v(p) — 1 and v = my. Hence A(ny) = —(4N(7p) —
Tr(mr)?) =p mod Zy.

In both cases, the level of Q(x) mod VANES p*'?) The discriminant of
Q(z) = %—E% mod units of Z, is disc(M,) = det(Tr(ei€;)) = det(S) =
(4N(u) — Tr(u)*)*N(7¥)?. That is, the discriminant of Q(z) mod Z) =
p*”") Thus the level and the discriminant of Q(z) mod units of Z, are

p"“’) and p?*?) respectively.
If v(p) = 0, M, is a maximal order of Ap, in which case the level and

discriminant of \(ﬂ are both 1 mod units of Z, (see [14 ; Proposition

2.11}).

In the case, p = ¢, the level and discriminant of %ﬁ: mod units of
Zp, q and ¢*, have been calculated by A. Pizer[14] and [19].

We conclude that the discriminant of Q(z) is ¢? Hp|P1P?"'I’d D
the level of Q(a) 1s ¢ HP pipa-pa P vir),

This completes the proof.

2v(r) and

3.2 Let M be an order of level N' = (¢; L(p1),v(p1); ... L(pa), ¥(pa))
in a Quaternion algebra 4 over @ ramified precisely at one finite prime
q and oo. Let I, I, ..., Iy, H = H(N') be representatives of all distinct
left M ideal classes. Let Af; be the right order of I; and e; = |U(M;)|.
We define

1 1
bij(n) = — 1 and b4;;(0)=— .
a=c ) 5(0)= =
aGIJ Ii N{a)y=nN(1;})/N(I;)
Then b; 1(7‘1) = i-(the number of elements in i 'I: whose norms are
]

nN(IL)/N(I;) for n > 0).
We are now in position to define the Brandt matrices associated with
the primitive orders in Quaternion algebra.
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DEFINITION 3.3. Let the notation be as above. The Brandt matrices
for n > 0 are defined by

B(n: N') = (bij(n)).
Thus B(n : N') is an H x H matrix with b;;(n) as the ¢;-th entry.

THEOREM 3.4. The entries of the Brandt matrix series,

O(r:N') = Z B(n : N)e*™nT

n=0
are modular forms of weight 2 on T'o(NV).

PROOF. Recall that B(n : N') = (b;;(n)) where b;;(n) is just -e]T times

the number of elements a € IJ-“]L- with N{a) = nN(/i)/N(I;) for n > 0.
Each entry of the Brandt matrix series, ©(7 : N') = (6i;(7)), 1s

0i5(7) =Y bis(n)e™

n=0

1 i
— = 2 : elminT
€5

rel I N(z)=nN(I)[N(1;)

1 2mir N(z)N(L;) /N
— € d Jj i
Ly

1'61]-_1],'

Let Q(z) = N(z)N(I;)/N(I;). Since I7 'L is a left ideal of M;, it is a
free Z module of rank 4. So identifying I]-_II,‘ with Z4, we have 6;;(7) =
el,» reZ e2m7Q(z) By Theorem 20 of [9: VI22 | and Proposition 3.2
above, this is a modular form of weight 2 on To( V). Note that the
spherical function with respect to Q(z) is 1 in the notation of Ogg [9:
VI22 ] and the character associated to §i;(7) is 1, since by Proposition
6.12 disc(Q(z)) = N? and Theorem 20 of [9: VI22' shows that e(d) =

(£-) = 1. This completes the proof.

Our final goal is to find the trace formula for the Brandt matrix
B(n : N'), which will be the central role in determining the subspace
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of modular forms generated by theta series (See [7]). First we need
to determine the mass formula for M ideals. Let M be an order of
level N' = (¢; L(p1),v(p1); ..., L(pa),v(pa)) on A and I, Iz,...., Iy be
representatives of the left A ideal classes. Recall that the right order of
I is given by M; = {a € A|Lia C I,}.

DEFINITION 3.5. Let the notations be as above. The mass formula
for M ideals where M is an order of level N = (¢; L(p1), v(p1); ---, L(pa),
v(pa)) 1s given by

H
Mass( M) 2:: |U(M T

THEOREM 3.G. Let M be an order of level
N' = (¢; L(p1),v(p1);.... L(pa), v(pa)) on A. Then

d
Mass(Al) = (g = 1) H

2 . ) )
vip)=2 o gp L(p;) is unramified

(P¥ — pip,
where 6(pi) = (p? = 1)p; =gy L(p;) is ramified and v(p;) > 2
(pi +1) if L(p:) is ramified and v(pi) = 1.
PROOF. Let M be an order of level ¢ in A which contains M. Then
as in Proposition 24 and Proposition 25 [12; p68&5],
Mass(M ) = Mass( M) ([U(MY) : (T(M))]) .

By Eichler(2; p95] Mass(AM") = £5(¢~1) . Thus we need to find [U(M"°) :
U{M)].
By Corollaryl [18; p8§].

[U(M®): U(M)] = H[U (M) : U(M,)] .
P
Since ]\ff]? is a maximal order, .Ml(,’ = Ro(L(p)) and M, = R,;,»(L(p)).

Suppose p # p1,--- ,pa. Then M} = M,, which implies [./’\/Il? My =
1. Hence we consider p = p, for some 1 < ¢ < d. In the following
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calculations, [R; : R}},] is given in Proposition 2.4 and Proposition 2.7
[6]. If L(p) is unramified over Q),, then

[U(M}) : UM,)] = [R : RF]- - [R),)_, : RG]
= (p* —pp’ P’
— (p2 __p)p”(l’)_z .

If L(p) is ramified over @, and v(p) > 2, then
[U(M;?) :U(M,)] = [Ry - RIJR{ : Ry} [Ru((p)»—] R:(p ]
=(+Lp-1pp---p
= (p* = 1)p"\r—* .

Finally, if L(p) is ramified over @, and v(p) = 1, then
[U(M’;,]) UM =[Rg :R{]=p+1.
Hence

Mass(M ) = — q——l H(S (pi)-

This completes the proof.

3.3 We need to set some notations. Let I’ be an imaginary qua-
dratic number field and © an order of K. Let A be a Quaternion algebra
over ) ramified only at ¢ and co and M an order of level N’ of A.

Analogously as in the local case, an optimal embedding O/ into
M/A is an Q injective homomorphism ¢, such that o(LX) N AM = »(O).
Then we denote by A((O, M), the number of mod U(M) equivalence
classes of optimal embeddings of O/ into M/A. Note that A(O, M)
depends only on the isomorphism classes of @ and M. For a prime [,
denote by C;j(©) the number of mod U( M) equivalen-e classes of optinal
embedding of O;/K; into M;/A; (See 5.2 and Definition 5.1 in [6]). Note
that C;(Q) depends only on O; and the level of M;.

Let M be an order of level N' = (¢; L(p1),v(p1); ..., L(pa), v(pa)) of A.
Let I1, I, .., Iy be a set of representatives of all the left M ideal classes
and M; be the right order of I; for 1 <) < H.
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THEOREM 3.6. [Pizer] Let the notation be as above. Then we have
> A0, M) = h(O) [Icwoy.
i=1 1IN

where h(Q) is the class number of locally principal O ideals and the
product is over all primes l dividing N.

PROOF. See Theorem 4.8 [15; p192].

COROLLARY 3.7. [Pizer] In the notation of 3.3, let a;(©O) denote the
number of optimal embeddings of O/ K into M;/A. Then

F

~

a;{ Q) h(O) v

= — Ci(O)
g T U H ’
where e; = |U(M;)].

PROOF. See Corollary 4.10 [15; p192].

THEOREM 3.8. The trace of Brandt matrix B(n : N') is

(B N = 305 Db /) [T s £21) + €0V Mass( A1)
E] f -

IIN

1 if n is a perfect square

where £(\/n) = {

The meaning of s, f,b(s, f) and c(s, f,1) are as follows.
Let s run over all integers such that s? — 47 is negative. Hence with
some positive integer ¢ and square free integer 1, we can classify s% —4n

by

0 otherwise .

2
) { tom m=1 mod4
& —~4dn =

t24m m=2,3 mod4.

For each s, let f run over all positive divisors of t. Let L = Q[x]/(®4(2))
where ®,(z) = v?— s +n and £ is the canonical image of z in L. Then L
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is an imaginary quadratic number field and £ generates the order Z + Z¢
of L. For each f, there is a uniquely determined order Oy containing
Z + Z€ as a submodule of index f. Let A(Qf) = s* —4n/f*. Let
h{A(Of))( resp. w(A(Oy)) denote the number of locally principal Oy
ideals( resp. 3|U(Oy)|). Then b(s, f) = %g%%.

Let M be an order of level N’ of B. Then ¢(s, f,1) is the number of
M = (M ® Zi)* equivalence classes of optimal embeddings of Oy ® Z;
into M ® Z;. In other words, let Z + Za be the maximal order of L,
then Of @ Z; = Zi + Zil™« and (s* — 4n)/f* = "™ A(a) mod ( (Z)2.
Since (s, f,1) is the number of M = V“)(L(l ) (See 3.3) equivalence
classes of optimal embeddings of [™« into M; = R, 1)(L(1)), it is easy to
find c(s, f,1) in Theorem 5.19, 5.30, 5.31 and Table 5.28 in [6] or [1] if

s,n and f are given.

REMARK. h(A(Oy)) can be expressed in terms of ‘standard’ class
number of maximal orders (see Corollary 3.11). It is well known that
w(A(Oy)) = 1 with two exceptions, w(—4) =2 and u(—3) = 3 (see (19;
p267)).

PROOF. Recall that B(n: N') = (b;;(n))
where b'f(n) = ?1; ZGGIJ-l[,',N(a)=nN(1.’)/N(Ij) 1. Then

b~
'™

trB(n: N') = bii(n)

1=1

it

1
” 2 :

€I I N(a)=nN(I) /N (L)

1
= z 1.

' a€M;,N(a)=n

Il
.M:

I

=1

e
[y

=1

If n is a perfect square, then n = a* for some a € Z. Since M; contains
Z for each i and N(Za) = a? = n, then Y cas. N(ar=n | = 2 for each
1<:< H. Hence

" "o
z__ Z E::Mass (M) .

. ez
=1 a€M; N(a)=n
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Now if n is not a perfect square in @, then let a;(s, n) denote the number
of a € M; with tr(a) = s, N(a) = n, and with 22 — sz + n irreducible
over Q. Then 3° cas Niaj=n 1 = 2, @i(s,n) where the sum is over all
integers, s such that s? — 4n < 0.

H
S =Y s BB
=] K] =1 I.;
>y
3

=1

Let ' = Q[z]/(2® — sx + n) and let 2’ be a oot of 22 — sz 4+ n in Iv.
Then a;(s,n) is equal to the number of isomorphisms ¢ of I into A
with ¢(z') € M;. Let Oy = Z + Zz' and O; be an order of ' with
Qo CO1 C K. If ¢ is an optimal embedding of OI/I\ into M; /A, then
#(O1) = M; N¢(K) and v € Oy C Oy imply ¢(z') € M;. Thus every
optimal embedding of some order O;,0y C ¢, C K into M;/A is an
isomorphism which is counted in a;(s,n). Conversely, if ¢ : k' — A is an
isomorphism with ¢(a2') .7\11- then M; N @(I) = O} is an order of p( L)
containing ¢(z'). Hence ¢~'(O}) is an order of " which contains O
and such that ¢ gives an optimal embedding of ¢~1((}) into M;. Thus
ai(s,n) 201300 a;(Oy). which we sum over all orders Oy of I which
contain Oy, and «;(Oy) is as in Corollay 3.7. Hence we have

PP

D0, i=1

h(Oy)
> mn“‘m

0O, D0, N

H
-
1=1

by Corollary 3.7.

Now A(Op) = s* —4n and A(O;) = (s? —4n)/ f* where (s —4n)/f? =
Oor1 mod4 and f is a positive integer. Taking into account the fact
that K must be imaginary quadratic and that an order of I\ is uniquely
determined by its discriminant, we set h{A(O;1) = h(O, )y w(A(O)) =
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2|1U(O1)| and c(s, f,1) = ci(O1). Then

i(s,n) h(Oy)
Yy sy 5 MO o)

s 1=1 s D0 IIN

—ZZ b(s, f) [J ets. £, -

1IN

Therefore,
(n:N")) = ZZ =b(s, ) [ (s, £,1)
1IN
\/E)Ma,ss(M)
LEMMA 3.9. Let I be an imaginary quadratic number field. Let Oy

be an order of K of discriminant A and let @' be the suborder of O} of
index f. Then

h(OII\' h OI\
JICE
w( ,I\) W(O s
g2 o )
Where{%}z{o if I*|A and I"*A=0or1l m(d4.
(%) the Kronecker symbol otherwise

PROOF. See Lemma 4.16 [15; p197]

COROLLARY 3.10. Let I be an imaginary quadratic number field.
Let @ be the maximal order of K and Q' a suborder of index f. Then

h(OII\) OI\
= 1-(=)=
S0, " o0 f%( &

where
1 if I splits in K

(=—)=¢ 0 if | ramifies in K
—1 if ] remains prime in Iy

is the Kronecker symbol. Note that h(Oy ) is the standard class number
of K.
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PROOF. See Corollary 4.17 [15; p197].

3.4 Let L and L' be two quadratic extensions of Qp contained in A,.
By an embedding we mean an injective Qp (or Z,) homomorphism.

Assume that L C B and let O’ be an order of L'. We say that O’ is
embeddable in R,(L) if there exists an embedding ¢ of L' into B such
that ¢(O') C R,(L).

DEFINITION 3.11. Define u(L, L') to be the nonegative integer or oo
characterized by the property : @, is embeddable in R,(L) if and only
if v < u(L,L").

Obviously, u(L.L') exists and depends only on discriminants of L
and L’. Also if discriminants of L and L' are equal, then pu(L,L') =
#(L',L) = co. For the details, see [6].

THEOREM 3.12. Let 4 be a rational Quaternion algebra ramified
precisely at one finite prime q and oo and M be an order of A of level
N'" = (g; L(p1),v(p1);.... L(pa), v(pq)) where 24 HLI pi. Then the class
number of an order M is

1 —4
H(N') =Mass(M) + (1 - (71*.))] [c)
e

q

1 -3, )
3= ]Jew,

e

where N = ¢ H;{:] pr7

?

if w(QuV=1),L(1)) = and v(l) = 1

1
i p(QuV=1),L(])) = oo

cl) =

jee R CVIR (V]

otherwise |
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o(1,1,1) if 143

if =3, pu=0

if 1=3, p=22andv(3) =1
if =3, p=2andv(3) =2
if =3, p=2andv(3)>3
if =3, p=ocandv(3 =1
if 1=3, p=oocandv(ld =2
if 1=3, p=ocandv(d =3

C'(1) =4

[« BNV =R Ve

and

2 u(QUV=3),L(l)) =1 and v(l)=1
e(1,1,0)=¢ 2 p(Quv=3),L{I)) = o0
0

otherwise

Here the product is over all distinct primes [ dividing % and (%) is the
Kronecker symbol. In particular, (:3—3) = (:244-) 0 and (—33)
Also, p = p(L(3), Q3(v/=3)).

PROOF. From the definition of the Brandt matrix, we see that H(N')
= tr(B(1: N')) (see Remark 2.25 [14]). Let us calculate tr(B(1 : N')).
By Theorem 3.9, if M is an order of level N', then

tr(B(L:N'))=>_ > %b(s, AT els, £,1) + Mass(M) .
K] ! =

IIN

Here, we need to explain b(s, f) and c(s, f,1) first. Let 5 be a canonical
image of z in Q[z]/(z* + sz + 1). Then for each f, there is uniquely
determined order Oy containing Z + Zn as a submodule of index f. Let
h(Of)(w(Oy)) denote the number of locally principat Oy ideals (1‘(’91)

'ZI-UTl@—)-I) Then b(s, f) = %-L Also (s, f,1) is the aqumber of M, =

U(,)(L(l)) see Definition 2.1) equivalence classes of optimal embeddings
of I™a into M; = R,(L(1)) where Z + Za is the maximal order of

Qlz)/(2? + sz + 1) and Of 0 Zy = Zi1 + Zil™a.
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As Q[z]/(2* +sx+1) is a quadratic imaginary number field, s2—4 < 0.
Hence, there are three choices for s. Namely, s = 0 or 1 and —1.
However, since Q[z]/(2* + a4+ 1) ~ Q[z]/(z® —  + 1) ~ Q(/=3). it

suffices to consider only the cases, s = 0 and 1.

1) case s = 0. (i.e. s° —4dn = —4).
Let ' = Q[2]/(a* +1) ~ Q(v/=1). Then Z + Z+/=1 is the max-
imal order of K. So f = 1. Let O = Z 4+ Z+/—1 for convenience.

Now we need to find 5(0,1) of O.

By [23; p267], the class number of 0 is 1 and the nunber of
units in O is 4. That is, 21(O) = 1 and w(O) = F|U(O)| =
Hence 5(0,1) = 1/;(((:))) = %

Next we need to calculate ¢(s, f,1) for I|N.

First, if [ = ¢, then ¢(0,1,¢) = (1 — :q—“l)) is given in Proposi-
tion G [4; p102].

Second, consider /‘%— ONhOZi=(Z+2V-1)22Z =7 +
Ziv-1.

A(\/——l) = —4 implies that Z; + Z:v/=1 ~ Z; 6 Z, or Z; +
Z1v/=1 is the ring of integers in a field Qi(V~-1).

If Zi+Zi/—=1~ Z; Z,. then since L1} is a field, by Theorem
3.10in [6) (Qi(v/=1),L{l)) =0or 1. By Themem 5.30 and 5.31
in [6], ¢(0,1,1), the nunber of M = R, (L(1)) equivalence
classes of optimal embeddings of \/__1 into M = R, (L(1)) is
2.if L{l) 1s ramified and v(I) = 1, i.e. pu(Qu/—1),L(1)) = 1
and v(1) = 1. Otherwise. by Theorem 5.19 and Table 5.28 in [6]
¢(0,1,7) = 0. If, on the other hand, Z; + Z;/—1 is the ring of
integers in a field Q;(v/=1). then since 24 ]—;’- IHAV=-T) = —4.
So Qi(v/~1)is unramified. By Theoren: 5.19 in (6], ¢(0,1,1) =2
if L(1) is unramified, that is g(Qi(v/=1), L(1)) = co. Otherwise,
by Theorem 5.19 and Table 5.28 in [6] ~(0,1,1) = 0.

Hence
2 if i QuV=1), L)) =21 and v(l)=1
c(0,1.1) = 2 0 (Quv=1),L(1)) == c0
0 otherwise
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i) case s = 1. (i.e. s —dn = —3).

Let K = Q[z]/(z* + z + 1) = Q(v/=3). Then Z 4+ Z+/=3 is the
maximal order of . Hence, f = 1. Let O = Z + Z/-3 for

convenience.

The class number of O is 1 and the number of units in O
is 6 (see [19; p267]). Hence b(1,1) = g% = 3 and we obtain
¢(1,1,1) as in the theorem by the table 5.28 in [6].

Again, we need to calculate c(s, f,1) for I|N.

First, if | = ¢, then ¢(1,1,¢) = (1 - (_TS)) was calculated by
Eichler [2; p102].

Second, if ll-i-;]— and ! # 3, then ¢(1,1,1) is the number of M =
R:(,)(L(:l)) equivalence classes of optimal embeddings of /-3
into M[ = R,,([)(L(l)).

Since A(v/—3) = —12, Qi(/—3) is either unramified or iso-
morphic to ) & Q.

Analogous to the case i), by Theorem 5.19, 5.30, 5.31 and
Table 5.28 in [6], ¢(1,1,1) is calculated as in the theorem.

Finally, if l|% and | = 3, since A(y/-3) = =12 = -3 -4,
Qi(v/—3) is ramified. By table 5.28 and Theorem 5.19 in [6].

if =0

if p=2andv(3)=1
if p=2andv(3)=2
if pg=2andv(3)>3
if p=o00andv(3)=

c(1,1,3) =

(e R N =\ B e

1
if gt =o00and (3) =2
3

if u=o0andv(3) >

where g = u(L(3),Q3(v/—=3)) (see Definition 3 3).
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Combining i) and ii), we obtain that

o

13.

14.

15.

s T f

N

:%b(o, 1) H(‘((), 1.1)

N
+%b(l,l)Hc(l,l,lH—%b(~l,1)Hc(—1,l,l)
- N - IIN
1 —4 1 -3
==(1 - (— C(H+=(1-(—- C'().
7! (q)),g (1) + 5 (q)”g ()
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