• Title/Summary/Keyword: ${\infty}$-hyponormal

Search Result 9, Processing Time 0.026 seconds

WHICH WEIGHTED SHIFTS ARE FLAT ?

  • SHEN, HAILONG;LI, CHUNJI
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.579-590
    • /
    • 2020
  • The flatness property of a unilateral weighted shifts is important to study the gaps between subnormality and hyponormality. In this paper, we first summerize the results on the flatness for some special kinds of a weighted shifts. And then, we consider the flatness property for a local-cubically hyponormal weighted shifts, which was introduced in [2]. Let α : ${\sqrt{\frac{2}{3}}}$, ${\sqrt{\frac{2}{3}}}$, $\{{\sqrt{\frac{n+1}{n+2}}}\}^{\infty}_{n=2}$ and let Wα be the associated weighted shift. We prove that Wα is a local-cubically hyponormal weighted shift Wα of order ${\theta}={\frac{\pi}{4}}$ by numerical calculation.

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

On the Flatness of Semi-Cubically Hyponormal Weighted Shifts

  • Li, Chunji;Ahn, Ji-Hye
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.721-727
    • /
    • 2008
  • Let $W_{\alpha}$ be a weighted shift with positive weight sequence ${\alpha}=\{\alpha_i\}_{i=0}^{\infty}$. The semi-cubical hyponormality of $W_{\alpha}$ is introduced and some flatness properties of $W_{\alpha}$ are discussed in this note. In particular, it is proved that if ${\alpha}_n={\alpha}_{n+1}$ for some $n{\geq}1$, ${{\alpha}_{n+k}}={\alpha}_n$ for all $k{\geq}1$.

INEQUALITIES OF OPERATOR POWERS

  • Lee, Eun-Young;Lee, Mi-Ryeong;Park, Hae-Yung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Duggal-Jeon-Kubrusly([2]) introduced Hilbert space operator T satisfying property ${\mid}T{\mid}^2{\leq}{\mid}T^2{\mid}$, where ${\mid}T{\mid}=(T^*T)^{1/2}$. In this paper we extend this property to general version, namely property B(n). In addition, we construct examples which distinguish the classes of operators with property B(n) for each $n{\in}\mathbb{N}$.

  • PDF

BACKWARD EXTENSIONS OF BERGMAN-TYPE WEIGHTED SHIFT

  • Li, Chunji;Qi, Wentao;Wang, Haiwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.81-93
    • /
    • 2020
  • Let m ∈ ℕ0, p > 1 and $${\alpha}^{[m,p]}(x)\;:\;{\sqrt{x}},\;\{{\sqrt{\frac{(m+n-1)p-(m+n-2)}{(m+n)p-(m+n-1)}}}\}^{\infty}_{n=1}$$. In this paper, we consider the backward extensions of Bergman-type weighted shift Wα[m,p](x). We consider its subnormality, k-hyponormality and positive quadratic hyponormality. Our results include all the results on Bergman weighted shift Wα(x) with m ∈ ℕ and $${\alpha}(x)\;:\;{\sqrt{x}},\;{\sqrt{\frac{m}{m+1}},\;{\sqrt{\frac{m}{m+2}},\;{\sqrt{\frac{m+2}{m+3}},{\cdots}$$.

THE HYPONORMAL TOEPLITZ OPERATORS ON THE VECTOR VALUED BERGMAN SPACE

  • Lu, Yufeng;Cui, Puyu;Shi, Yanyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.237-252
    • /
    • 2014
  • In this paper, we give a necessary and sufficient condition for the hyponormality of the block Toeplitz operators $T_{\Phi}$, where ${\Phi}$ = $F+G^*$, F(z), G(z) are some matrix valued polynomials on the vector valued Bergman space $L^2_a(\mathbb{D},\mathbb{C}^n)$. We also show some necessary conditions for the hyponormality of $T_{F+G^*}$ with $F+G^*{\in}h^{\infty}{\otimes}M_{n{\times}n}$ on $L^2_a(\mathbb{D},\mathbb{C}^n)$.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.