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BACKWARD EXTENSIONS OF BERGMAN-TYPE

WEIGHTED SHIFT
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Abstract. Let m ∈ N0, p > 1 and

α[m,p] (x) :
√
x,

{√
(m+ n− 1) p− (m+ n− 2)

(m+ n) p− (m+ n− 1)

}∞
n=1

.

In this paper, we consider the backward extensions of Bergman-type

weighted shift Wα[m,p](x). We consider its subnormality, k-hyponormality

and positive quadratic hyponormality. Our results include all the results
on Bergman weighted shift Wα(x) with m ∈ N and

α (x) :
√
x,

√
m

m+ 1
,

√
m+ 1

m+ 2
,

√
m+ 2

m+ 3
, . . . .

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space and let
L(H) be the algebra of all bounded linear operators on H. An operator T in
L(H) is said to be normal if T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗, and
subnormal if T = N |H , where N is normal on some Hilbert space K ⊇ H. For
A,B ∈ L(H), let [A,B] := AB−BA. We say that an n-tuple T = (T1, . . . , Tn)
of operators in L(H) is hyponormal if the operator matrix ([T ∗j , Ti])

n
i,j=1 is

positive on the direct sum of n copies of H. For arbitrary positive integer k, an
operator T ∈ L(H) is (strongly) k-hyponormal if (I, T, . . . , T k) is hyponormal.
It is well-known that T is subnormal if and only if T is ∞-hyponormal. An
operator T in L(H) is said to be weakly n-hyponormal if p(T ) is hyponormal
for any polynomial p with degree less than or equal to n. And an operator
T is polynomially hyponormal if p(T ) is hyponormal for every polynomial p.
In particular, the weak 2-hyponormality (or weak 3-hyponormality) is referred
to as quadratic hyponormality (or cubic hyponormality, resp.), and has been
considered in detail in [5], [6], [10], [12], [13], [15], and [16], etc.
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Let {en}∞n=0 be the canonical orthonormal basis for Hilbert space l2 (N0)
(N0 := N ∪ {0}) and let α := {αn}∞n=0 be a bounded sequence of positive
numbers. Let Wα be a unilateral weighted shift defined by Wαen := αnen+1

(n ∈ N0) . It is well known that Wα is hyponormal if and only if αn ≤ αn+1

(n ∈ N0) . The moments of Wα are usually defined by γ0 := 1, γi := α2
0 · · ·α2

i−1
(i ∈ N) .

Berger’s Theorem ([4]). Wα is subnormal if and only if there exists a Borel

probability measure µ supported in
[
0, ‖Wα‖2

]
, with ‖Wα‖2 ∈ supp µ, such

that γn =
∫
tndµ (t) (∀n ∈ N0) .

Let α (x) : x, α0, α1, α2, . . . (x > 0) be an augmented weight sequence for
the given α = {αn}∞n=0. Then we have the following result.

Theorem 1.1 ([3, Prop. 8]). Let Wα be subnormal with associated measure
µ. Then Wα(x) is subnormal if and only if

(i) 1
t ∈ L

1 (µ) and

(ii) x2 ≤
(∥∥ 1

t

∥∥
L1(µ)

)−1
.

In particular, Wα(x) is never subnormal when µ ({0}) > 0.

Next problem was introduced by Curto and Fialkow ([4], [5]).

The backward extension problem. Let α(x) : x, α0, α1, . . . (x > 0) be an
augmented weight sequence for the given α = {αn}∞n=0 and let a weighted shift
Wα(x) be a backward extension of Wα. Assume that Wα is k-hyponormal for
k ∈ N ∪ {∞}. Describe the sets

HE(α;n) = {x ∈ R+ : Wα(x) is n-hyponormal} (1 ≤ n ≤ k).

If a weight sequence α = {αn}∞n=0 is given by αn =
√

n+2
n+3 (n ∈ N0), then the

corresponding weighted shift is called the Bergman shift ([2]). In [3], the author
showed that if Wα(x) is an one-step backward extension of the Bergman shift

Wα, then there exists a sequence {λk}∞k=1 ⊂ R+ with limk→∞ λk =
√

1
2 such

that λk > λk+1 (k ≥ 1) and HE(α; k) = (0, λk], where λ1 =
√

2
3 , λ2 = 3

4 , λ3 =√
8
15 , λ4 =

√
25
48 , . . . , and HE(α,∞) =

(
0,
√

1
2

]
, which distinguishes the classes

of k-hyponormal operators from one another. In [14], the authors obtained
a formula for k-hyponormal of Wα(x) which contributed to the improvement
of the study of relationships between subnormality and hyponormality. For

α(x) :
√
x,
√

n+2
n+3 (n ∈ N) , we know that if 2

3 < x ≤ 13259
18228 , then Wα(x) is not

subnormal but completely semi-weakly hyponormal ([18, Th. 2.3]). Moreover,
the authors in [9] considered a Bergman-like shift which is a generalization of
Bergman shift and they proved that all Bergman-like shifts are subnormal.
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The authors in [11] introduced a class of Bergman-type weighted shift oper-
ators and considered its k-hyponormalities. For a positive real number p > 1,

we consider a weight sequence α[p] := {α[p]
k }k≥0 as follows:

(1.1) α[p] :

√
1

p
,

√
p

2p− 1
,

√
2p− 1

3p− 2
,

√
3p− 2

4p− 3
, . . . .

The corresponding weighted shift Wα[p] is called a Bergman-type shift. In par-

ticular, if p = 2, then α[2] =
{√

k+1
k+2

}
for k ≥ 0, i.e., the Bergman-type shift

Wα[2] is just the Bergman shift. So we can see that the Bergman-type shift
with weight α[p] as in (1.1) is a generalized form of Bergman shifts.

In this paper, we consider more generalized form as following (m ∈ N0,
p > 1)

(1.2) α[m,p] :

√
mp− (m− 1)

(m+ 1) p− (m)
,

√
(m+ 1) p− (m)

(m+ 2) p− (m+ 1)
, . . . ,

and the extended weight sequence

(1.3) α[m,p] (x) :
√
x,

√
mp− (m− 1)

(m+ 1) p− (m)
,

√
(m+ 1) p− (m)

(m+ 2) p− (m+ 1)
, . . . ,

with 0 < x ≤ mp−(m−1)
(m+1)p−(m) .

This paper consists of five sections. In Section 2, we give some key lemmas
and formulas. In Section 3 and Section 4, we discuss the problem of subnor-
mality and the problem of n-hyponormality for Wα[m,p](x), which improves the

results in [7] and [14]. In Section 5, we discuss the problem of positive quadratic
hyponormality of Wα[m,p](x).

In this paper, as usual, we denote N, C, and R+, for the set of positive
integers, complex numbers, and nonnegative real numbers, respectively.

2. Preliminaries and notations

In this section, we give essential lemmas and formulas to prove our results.
First, we recall Cauchy’s double alternant ([17, p. 6]) that the determinant of
the matrix with (i, j) entry 1

Xi+Yj
is

(2.1) det
1≤i,j≤n

(
1

Xi + Yj

)
=

∏
1≤i<j≤n (Xi −Xj) (Yi − Yj)∏

1≤i,j≤n (Xi + Yj)
.

According to (2.1), we have the following result.

Proposition 2.1 ([7]). For ω ≥ 0, the determinant An (ω) of the matrix with
(i, j) entry 1

ω+i+j−1 (1 ≤ i, j ≤ n) is 1

An (ω) = (1!2! · · · (n− 1)!)
2 Γ (ω + 1) Γ (ω + 2) · · ·Γ (ω + n)

Γ (n+ ω + 1) Γ (n+ ω + 2) · · ·Γ (2n+ ω)
.

1Γ(·) is the gamma function.
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Recall that a weighted shift Wα is quadratically hyponormal if Wα + sW 2
α is

hyponormal for any s ∈ C ([5]), i.e., D(s) := [(Wα + sW 2
α)∗,Wα + sW 2

α] ≥ 0,
for any s ∈ C. Let {ei}∞i=0 be an orthonormal basis for H and let Pn be the
orthogonal projection on ∨ni=0{ei}. For s ∈ C we let

Dn(s) = Pn[(Wα + sW 2
α)∗,Wα + sW 2

α]Pn

=



q0 r0 0 · · · 0 0
r0 q1 r1 · · · 0 0

0 r1 q2
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . qn−1 rn−1

0 0 0 · · · rn−1 qn


,

where

qk := uk + |s|2 vk, rk := wks̄,

uk := α2
k − α2

k−1, vk := α2
kα

2
k+1 − α2

k−2α
2
k−1,

wk := α2
k(α2

k+1 − α2
k−1)2 for k ≥ 0,

and α−1 = α−2 := 0. Hence, Wα is quadratically hyponormal if and only if
Dn(s) ≥ 0 for every s ∈ C and every n ∈ N0. We consider dn (·) := detDn (·)
which is a polynomial in t := |s|2 of degree n + 1, with Maclaurin expansion

dn (t) :=
∑n+1
i=0 c (n, i) ti. It is easy to find the following recursive relations ([5])

d0 (t) = q0,

d1 (t) = q0q1 − |r0|2 ,
dn+2 (t) = qn+2dn+1 (t)− |rn+1|2 dn (t) (n ≥ 0) .

Also, we can obtain the followings

c (0, 0) = u0, c (0, 1) = v0,

c (1, 0) = u1u0, c (1, 1) = u1v0 + u0v1 − w0, c (1, 2) = v1v0,

and

c (n+ 2, i) = un+2c (n+ 1, i) + vn+2c (n+ 1, i− 1)− wn+1c (n, i− 1)

(n ≥ 0, and 0 ≤ i ≤ n+ 1) .

In particular, for any n ∈ N0, we have

c (n, 0) = u0u1 · · ·un, c (n, n+ 1) = v0v1 · · · vn.

Furthermore, we can obtain the results as following.

Lemma 2.2. Let ρ := v2 (u0v1 − w0) + v0 (u1v2 − w1) . Then for any n ≥ 4,
we have

c (n, n) = unc (n− 1, n) + (un−1vn − wn−1) c (n− 2, n− 1)
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+

n−3∑
i=1

vnvn−1 · · · vi+3 (ui+1vi+2 − wi+1) c (i, i+ 1) + vnvn−1 · · · v3ρ.

Lemma 2.3. Let τ := u0 (u1v2 − w1) . Then for any n ≥ 4, we have

c (n, n− 1) = unc (n− 1, n− 1) + (un−1vn − wn−1) c (n− 2, n− 2)

+

n−3∑
i=1

vnvn−1 · · · vi+3 (ui+1vi+2 − wi+1) c (i, i) + vnvn−1 · · · v3τ.

Lemma 2.4. For any n ≥ 5 and 0 ≤ i ≤ n− 2, we have

c (n, i) = unc (n− 1, i) + (un−1vn − wn−1) c (n− 2, i− 1)

+

n−3∑
j=1

vnvn−1 · · · vj+3 (uj+1vj+2 − wj+1) c (j, j + i− n+ 1)

+ vnvn−1 · · · v5c (i− n+ 5, 0) (ui−n+6vi−n+7 − wi−n+6) .

To detect the positivity of dn (t) , we need the following concepts.

Definition 1 ([5]). Let α : α0, α1, . . . be a positive weight sequence. We say
that Wα is positively quadratically hyponormal if c (n, i) ≥ 0 for all n, i ∈ N0,
with 0 ≤ i ≤ n+ 1, and c (n, n+ 1) > 0 for all n ∈ N0.

Definition 2 ([1, Def. 3.1]). Let α : α0, α1, . . . be a positive weight sequence.
(1) A weighted shift Wα has property B (k) if un+1vn ≥ wn (n ≥ k) .
(2) A weighted shift Wα has property C (k) if vn+1un ≥ wn (n ≥ k) .

We give the result as following.

Proposition 2.5 ([3, Coro. 5]). Let Wα be any unilateral weighted shift. Then
Wα is 2-hyponormal if and only if θk := ukvk+1 − wk ≥ 0, ∀k ∈ N.

It is well-known that if Wα is 2-hyponormal or positively quadratically hy-
ponormal, then Wα is quadratically hyponormal. By Proposition 2.5, and
Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have the following result.

Proposition 2.6 ([1, Coro. 3.5]). Let Wα be any unilateral weighted shift. If
Wα is 2-hyponormal, then Wα is positively quadratically hyponormal.

3. Subnormality of Wα[m,p](x)

For weighted shifts in (1.2), we have

(3.1) γ0 = 1, γn =
mp− (m− 1)

(m+ n) p− (m+ n− 1)
, (n ≥ 1)

and ∫ 1

0

tnd
(
t
m(p−1)+1

p−1

)
=
m (p− 1) + 1

p− 1

∫ 1

0

tn+
m(p−1)+1

p−1 −1dt
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=
mp− (m− 1)

(m+ n) p− (m+ n− 1)
= γn,

i.e., dµ = d
(
t
m(p−1)+1

p−1

)
= t

m(p−1)+1
p−1 −1dt is a representing measure for γ :=

{γn}∞n=0 as in (3.1). Hence, we can obtain the result as following.

Theorem 3.1. Let m ≥ 1 and α[m,p] (x) be as in (1.3). Then Wα[m,p](x) is

subnormal if and only if 0 < x ≤ (m−1)p−(m−2)
mp−(m−1) .

Proof. Indeed,∫ 1

0

1

t
dµ =

∫ 1

0

1

t
d
(
t
m(p−1)+1

p−1

)
=

mp− (m− 1)

(m− 1)p− (m− 2)
.

Thus by Theorem 1.1, we have our conclusion. �

By Theorem 3.1, we have the results as following.

Corollary 3.2. Let

α[1,p] (x) :
√
x,

√
p

2p− 1
,

√
2p− 1

3p− 2
,

√
3p− 2

4p− 3
, . . . .

Then Wα[1,p](x) is subnormal if and only if 0 < x ≤ 1
p .

Corollary 3.3 ([14, Exa. 3.2]). Let m ≥ 1 and

α[m,2] (x) :
√
x,

√
m+ 1

m+ 2
,

√
m+ 2

m+ 3
,

√
m+ 3

m+ 4
, . . . .

Then Wα[m,2](x) is subnormal if and only if 0 < x ≤ m
m+1 .

Corollary 3.4. Let m ≥ 1 and

α[m,3] (x) :
√
x,

√
2m+ 1

2m+ 3
,

√
2m+ 3

2m+ 5
,

√
2m+ 5

2m+ 7
, . . . .

Then Wα[m,3](x) is subnormal if and only if 0 < x ≤ 2m−1
2m+1 .

4. k-hyponormality of Wα[m,p](x)

First, we give the following result.

Proposition 4.1. (1) Let α[0,2] (x) :
√
x,
√

1
2 ,
√

2
3 ,
√

3
4 , . . . . Then Wα[0,2](x) is

n-hyponormal if and only if 0 < x ≤ 1

2(
∑n

i=1
1
i )
. In particular, Wα[0,2](x) is not

subnormal for any x > 0.

(2) Let 1 < p 6= 2, and α[0,p](x) :
√
x,
√

1
p ,
√

p
2p−1 ,

√
2p−1
3p−2 , . . .. Then

Wα[0,p](x) is n-hyponormal if and only if

0 < x ≤
(2− p)

∏n−1
l=0 [lp− (l − 1)]

2∏n−1
l=0 [lp− (l − 1)]

2 − (n!)
2

(p− 1)2n
.
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Proof. See [11, Th. 3.2, Th. 4.1]. �

For m ≥ 1, we have:

Theorem 4.2. Let α[m,p] (x) be as in (1.3). Then Wα[m,p](x) (m ≥ 1) is n-
hyponormal if and only if

0 < x ≤ (m− 1) (p− 1) + 1

m (p− 1) + 1

∏n−1
l=0 [(m+ l) p− (m+ l − 1)]

2∏n−1
l=0 [(m+ l) p− (m+ l − 1)]

2 − (n!)
2

(p− 1)2n
.

Proof. We know that Wα[m,p](x) is n-hyponormal if and only if the following
Hankel matrix

M
[m,p]
n+1 (x) :=


1
x 1 γ1 · · · γn−1
1 γ1 γ2 · · · γn
γ1 γ2 γ3 · · · γn+1

...
...

...
. . .

...
γn−1 γn γn+1 · · · γ2n−1

 ≥ 0,

where γi = mp−(m−1)
(m+i)p−(m+i−1) (1 ≤ i ≤ 2n− 1) . Since

D
[m,p]
n+1 (x) := detM

[m,p]
n+1 (x)

= (mp− (m− 1))
n+1

×
[(

1

(mp−(m−1))x
− 1

(m−1)p−(m−2)

)
D[1]
n (p) +D

[2]
n+1(p)

]
,

where (by Proposition 2.1)

D[1]
n (p) =

∣∣∣∣∣∣∣∣∣∣

1
(m+1)p−m

1
(m+2)p−(m+1) · · · 1

(m+n)p−(m+n−1)
1

(m+2)p−(m+1)
1

(m+3)p−(m+2) · · · 1
(m+n+1)p−(m+n)

...
...

. . .
...

1
(m+n)p−(m+n−1)

1
(m+n+1)p−(m+n) · · · 1

(m+2n−1)p−(m+2n−2)

∣∣∣∣∣∣∣∣∣∣
n

=
1

(p− 1)n
(1!2! · · · (n− 1)!)2(∏n

l=1

∏n
s=1

(
1
p−1 +m+ l + s− 1

)) ,
and

D
[2]
n+1(p) =

∣∣∣∣∣∣∣∣∣∣

1
(m−1)p−(m−2)

1
mp−(m−1) · · · 1

(m+n−1)p−(m+n−2)
1

mp−(m−1)
1

(m+1)p−m · · · 1
(m+n)p−(m+n−1)

...
...

. . .
...

1
(m+n−1)p−(m+n−2)

1
(m+n)p−(m+n−1) · · · 1

(m+2n−1)p−(m+2n−2)

∣∣∣∣∣∣∣∣∣∣
n+1

=
1

(p− 1)n+1

(1!2! · · ·n!)2(∏n
l=0

(
1
p−1 +m+ l − 1

)l+1
)(∏2n

l=n+1

(
1
p−1 +m+ l − 1

)2n−l+1
) ,
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we know that D
[m,p]
n+1 (x) ≥ 0 if and only if

0 < x ≤ 1

mp− (m− 1)

[(m− 1)p− (m− 2)]D
[1]
n (p)

D
[1]
n (p)− [(m− 1)p− (m− 2)]D

[2]
n+1(p)

=
(m− 1) (p− 1) + 1

m (p− 1) + 1

∏n−1
l=0 [(m+ l) p− (m+ l − 1)]

2∏n−1
l=0 [(m+ l) p− (m+ l − 1)]

2 − (n!)
2

(p− 1)2n
.

Thus we have our conclusion. �

By Theorem 4.2, we have the following results.

Corollary 4.3 ([11, Th. 4.1]). Let α[1,p](x) :
√
x,
√

p
2p−1 ,

√
2p−1
3p−2 ,

√
3p−2
4p−3 , . . . .

Then Wα[1,p](x) is n-hyponormal if and only if

0 < x ≤ 1

p

∏n
l=1 [lp− (l − 1)]

2∏n
l=1 [lp− (l − 1)]

2 − (n!)
2

(p− 1)2n
.

Corollary 4.4 ([8, Exa. 8]). Let α[1,2](x) :
√
x,
√

2
3 ,
√

3
4 ,
√

4
5 , . . .. Then

Wα[1,2](x) is n-hyponormal if and only if 0 < x ≤ 1
2
(n+1)2

n(n+2) .

5. Positive quadratic hyponormality of Wα[m,p](x)

Let α[m,p] (x) (m ∈ N0, p > 1) be as in (1.3). Then we have the following
result.

Lemma 5.1. un+1vn = wn (∀n ≥ 3) and unvn+1 > wn (∀n ≥ 2) .

Proof. Since α2
n = (m+n−1)p−(m+n−2)

(m+n)p−(m+n−1) (n ≥ 1) , we have

un+1 =
(p− 1)

2

((m+ n+ 1) p− (m+ n)) ((m+ n) p− (m+ n− 1))
,

vn =
4 (p− 1)

2

((m+ n+ 1) p− (m+ n)) ((m+ n− 1) p− (m+ n− 2))
,

wn =
4 (p− 1)

4(
((m+ n− 1) p− (m+ n− 2)) ((m+ n) p− (m+ n− 1))

× ((m+ n+ 1) p− (m+ n))
2

) ,
thus un+1vn = wn (∀n ≥ 3) . And since

un =
(p− 1)

2

((m+ n) p− (m+ n− 1)) ((m+ n− 1) p− (m+ n− 2))
,

vn+1 =
4 (p− 1)

2

((m+ n+ 2) p− (m+ n+ 1)) ((m+ n) p− (m+ n− 1))
,

for n ≥ 2, we have

unvn+1 − wn
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=
4 (p− 1)

6(
((m+ n− 1) p− (m+ n− 2)) ((m+ n+ 2) p− (m+ n+ 1))

× ((m+ n) p− (m+ n− 1))
2

((m+ n+ 1) p− (m+ n))
2

) > 0.

Thus we have our conclusion. �

By Lemma 5.1, we know that Wα[m,p](x) has the properties B (3) and C (2) .

Hence, by [1, Th. 3.9], we obtain the result as following.

Proposition 5.2. Let α[m,p] (x) be as in (1.3). Wα[m,p](x) is positively quadrat-
ically hyponormal if and only if

c (1, 1) , c (2, 1) , c (2, 2) , c (3, 2) , c (3, 3) , c (4, 3)

are all nonnegative.

By Proposition 5.2, we obtain the following result.

Theorem 5.3. Let p ≥ 2 and α[0,p] (x) :
√
x,
√

1
p ,
√

p
2p−1 ,

√
2p−1
3p−2 ,

√
3p−2
4p−3 , . . . .

Then Wα[0,p](x) is positively quadratically hyponormal if and only if

0 < x ≤ 16p3 − 25p2 + 6p+ 4

32p4 − 96p3 + 120p2 − 75p+ 20
.

Proof. In fact,

c (1, 1) = x
p− (2p− 1)x

p (2p− 1)
> 0,

c (2, 1) =
2

p
x (p− 1)

2 1− px
(2p− 1) (3p− 2)

≥ 0,

c (2, 2) = x (p− 1)
2 p+ 2 (1− px)

p2 (2p− 1) (3p− 2)
> 0,

c (3, 2) = x (p− 1)
4 (4p+ 3)− 2

(
4p2 − 4p+ 3

)
x

p2 (3p− 2) (4p− 3) (2p− 1)
2 ,

c (3, 3) = x (p− 1)
2

(
4p3 − 4p2 − p+ 2

)
− (2p− 1)

(
4p2 − 6p+ 3

)
x

p2 (3p− 2) (4p− 3) (2p− 1)
2 ,

c (4, 3) = x (p− 1)
4

(
16p3−25p2+6p+4

)
−
(
32p4−96p3+120p2−75p+20

)
x

p2 (4p−3) (5p−4) (2p−1)
2

(3p−2)
2 .

And

c (3, 2) ≥ 0⇐⇒ 0 < x ≤ c32 :=
4p+ 3

8p2 − 8p+ 6
,

c (3, 3) ≥ 0⇐⇒ 0 < x ≤ c33 :=
4p3 − 4p2 − p+ 2

(2p− 1) (4p2 − 6p+ 3)
,

c (4, 3) ≥ 0⇐⇒ 0 < x ≤ c43 :=
16p3 − 25p2 + 6p+ 4

32p4 − 96p3 + 120p2 − 75p+ 20
.
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It is easy to see that min
{

1
p , c32, c33, c43

}
= c43. Thus, by Proposition 5.2, we

obtain the result. �

Corollary 5.4 ([1, Exa. 4.3]). Let α[0,2] (x) :
√
x,
√

1
2 ,
√

2
3 ,
√

3
4 , . . . . Then

Wα[0,2](x) is positively quadratically hyponormal if and only if 0 < x ≤ 22
47 .

For a weighted shift with first two equal weights, we have the result as
following.

Proposition 5.5 ([1, Coro. 3.10]). Let Wα be a weighted shift with α0 = α1. If
Wα has property B (3) , then Wα is positively quadratically hyponormal if and
only if c (3, 2) ≥ 0 and c (4, 3) ≥ 0.

By Lemma 5.1, since Wα[m,p](x) has the properties B (3) , we let

α0 = α1 =

√
mp− (m− 1)

(m+ 1) p−m
, αk =

√
(m+ k − 1) p− (m+ k − 2)

(m+ k) p− (m+ k − 1)
(k ≥ 2) ,

then we obtain

c (3, 2) =
((m− 1) p− (m− 2)) (p− 1)

4
(m (p− 1) + 1)

2

(m (p− 1) + p)
4

(m (p− 1) + 2p− 1)
2

(m (p− 1) + 3p− 2)
≥ 0,

and

c (4, 3) =
(p− 1)

6
(m (p− 1) + 1)

2
f (p)(

(m (p− 1) + p)
4

(m (p− 1) + 2p− 1)
2

(m (p− 1) + 3p− 2)
2

× (m (p− 1) + 4p− 3) (m (p− 1) + 5p− 4)

) ,
where

f (p) =
(
3m2 + 7m− 16

)
p2 +

(
39− 8m− 6m2

)
p+

(
3m2 +m− 20

)
.

(i) If m = 1, then f (p) = −6p2 + 25p − 16. Since f (p) ≥ 0 ⇐⇒ 25
12 −

1
12

√
241 (≈ 0.789 65) < p ≤ 1

12

√
241 + 25

12 (≈ 3.377) , we know that c (4, 3) ≥
0⇐⇒ 1 < p ≤ 1

12

√
241 + 25

12 .
(ii) If m ≥ 2, then f (p) ≥ 0. In fact, from f (p) = 0, we obtain the two

distinct roots

p̄ := r (m) =
6m2 + 8m− 39±

√
241

6m2 + 14m− 32
.

Since r
′
(m) = 1

(m± 1
6

√
241+ 7

6 )
2 > 0 and p̄ → 1 (as m → ∞), we know that

p̄ < 1. Thus, if m ≥ 2 and p > 1, then f (p) ≥ 0.
Thus by Proposition 5.5 and [16, Prop. 3.4], we obtain the results as follow-

ing.

Theorem 5.6. Let m ≥ 2 and α[m,p] (x) be as in (1.3). Then the followings
are equivalent.

(1) Wα[m,p](x) is positively quadratically hyponormal;

(2) Wα[m,p](x) is quadratically hyponormal;
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(3) 0 < x ≤ mp−(m−1)
(m+1)p−(m) .

Theorem 5.7. Let α[1,p](x) :
√
x,
√

p
2p−1 ,

√
2p−1
3p−2 ,

√
3p−2
4p−3 , . . . . If 1 < p ≤

25+
√
241

12 (≈ 3.377), then the followings are equivalent.
(1) Wα[1,p](x) is positively quadratically hyponormal;

(2) Wα[1,p](x) is quadratically hyponormal;

(3) 0 < x ≤ p
2p−1 .

By Theorem 5.7, we obtain the results as following.

Corollary 5.8 ([3, Prop. 7]). Let α[1,2](x) :
√
x,
√

2
3 ,
√

3
4 ,
√

4
5 , . . . . Then the

followings are equivalent.
(1) Wα[1,2](x) is positively quadratically hyponormal;

(2) Wα[1,2](x) is quadratically hyponormal;

(3) 0 < x ≤ 2
3 .

Corollary 5.9. Let α[1,3](x) :
√
x,
√

3
5 ,
√

5
7 ,
√

7
9 , . . . . Then the followings are

equivalent.
(1) Wα[1,3](x) is positively quadratically hyponormal;

(2) Wα[1,3](x) is quadratically hyponormal;

(3) 0 < x ≤ 3
5 .

Furthermore, for m = 1, and p > 25+
√
241

12 , by direct computation, we obtain

c (1, 1) = px
(2p− 1)− (3p− 2)x

(2p− 1) (3p− 2)
> 0,

c (2, 1) = 2
x

2p− 1
(p− 1)

2 p− (2p− 1)x

(3p− 2) (4p− 3)
≥ 0,

and

c (2, 2) = px (p− 1)
2 (4p− 1)− 2 (2p− 1)x

(3p− 2) (4p− 3) (2p− 1)
2 ,

c (3, 2) = x (p− 1)
4 p (11p− 4)− 2

(
11p2 − 12p+ 4

)
x

(4p− 3) (5p− 4) (2p− 1)
2

(3p− 2)
2 ,

c (3, 3) = px (p− 1)
2

(
16p3 − 31p2 + 20p− 4

)
− (3p− 2)

(
7p2 − 10p+ 4

)
x

(4p− 3) (5p− 4) (2p− 1)
2

(3p− 2)
2 ,

c (4, 3) = x (p−1)
4 p
(
44p3−98p2+71p−16

)
−
(
94p4−277p3+312p2−160p+32

)
x

(5p−4) (6p−5) (2p−1)
2

(3p−2)
2

(4p−3)
2 .

Thus

c (2, 2) ≥ 0⇐⇒ 0 < x ≤ c22 :=
(4p− 1)

2 (2p− 1)
,
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c (3, 2) ≥ 0⇐⇒ 0 < x ≤ c32 :=
p (11p− 4)

2 (11p2 − 12p+ 4)
,

c (3, 3) ≥ 0⇐⇒ 0 < x ≤ c33 :=

(
16p3 − 31p2 + 20p− 4

)
(3p− 2) (7p2 − 10p+ 4)

,

c (4, 3) ≥ 0⇐⇒ 0 < x ≤ c43 :=
p
(
44p3 − 98p2 + 71p− 16

)
94p4 − 277p3 + 312p2 − 160p+ 32

.

It is easy to see that min {c22, c32, c33, c43} = c43. Thus, by Proposition 5.2, we
obtain the results as following.

Theorem 5.10. Let α[1,p](x) :
√
x,
√

p
2p−1 ,

√
2p−1
3p−2 ,

√
3p−2
4p−3 , . . ., and p>

25+
√
241

12 .

Then Wα[1,p](x) is positively quadratically hyponormal if and only if

0 < x ≤
p
(
44p3 − 98p2 + 71p− 16

)
94p4 − 277p3 + 312p2 − 160p+ 32

.

Remark. If p > 25+
√
241

12 , then
p(44p3−98p2+71p−16)

94p4−277p3+312p2−160p+32 <
p

2p−1 .

Corollary 5.11. Let α[1,4](x) :
√
x,
√

4
7 ,
√

7
10 ,
√

10
13 , . . . . ThenWα[1,4](x) is pos-

itively quadratically hyponormal if and only if 0 < x ≤ 379
670 (≈ 0.565 67) .
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