• 제목/요약/키워드: ${\beta}A$

검색결과 16,421건 처리시간 0.044초

A1/A2 ${\beta}$-카세인이 인간 건강에 미치는 학문적 고찰 (Scientific Consideration of A1/A2 Beta Casein Influence in Human Health)

  • 이동석
    • Journal of Dairy Science and Biotechnology
    • /
    • 제26권1호
    • /
    • pp.11-19
    • /
    • 2008
  • Milk from dairy cows has long provided a high quality source of protein and selected micronutrients as calcuim to most populations. Recently, a relationship between disease risk and consumption of specific bovine ${\beta}$-casein fraction either A1 or A2 genetic variants has identified. Populations, which consume milk contain high containing high levels of ${\beta}$-casein A2 variants, have a lower incidence of cardiovascular disease and type 1 diabetes. Furthermore, consumption of milk with the A2 variants may be associated with less severe symptoms of autism and schizophrenia. The mechanism of action focuses on ${\beta}$-casein A1 and related forms preferentially that are able to produce a bioactive opioid peptide, ${\beta}$-casomorphin-7(${\beta}$-CM-7) during digestion. Infants may absorb ${\beta}$-CM-7 due to an immature gastrointestinal tract. Adult, on the other hand, appear to reap the biological activity locally on the intestinal brush boarder. ${\beta}$-CM-7 can potentially affect numerous opioid receptors in the nervous, endocrine, and immune system. Whether there is a definite health benefit to milk containing the A2 genetic variant is unknown and requires further investigation.

  • PDF

Protective Effect of Citrate against $A{\beta}$-induced Neurotoxicity in PC12 Cells

  • Yang, Hyun-Duk;Son, Il-Hong;Lee, Sung-Soo;Park, Yong-Hoon
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.157-163
    • /
    • 2008
  • Formation of ${\beta}$-amyloid $(A{\beta})$ fibrils has been identified as one of the major characteristics of Alzheimer's disease (AD). Inhibition of $A{\beta}$ fibril formation in the CNS would be attractive therapeutic targets for the treatment of AD. Several small compounds that inhibit amyloid formation or amyloid neurotoxicity in vitro have been known. Citrate has surfactant function effect because of its molecular structure having high anionic charge density, in addition to the well-known antibacterial and antioxidant properties. Therefore, we hypothesized that citrate might have the inhibitory effect against $A{\beta}$ fibril formation in vitro and have the protective effect against $A{\beta}$-induced neurotoxicity in PC12 cells. We examined the effect of citrate against the formation of $A{\beta}$ fibrils by measuring the intensity of fluorescence in thioflavin-T (Th-T) assay of between $A{\beta}_{25-35}$ groups treated with citrate and the control with $A{\beta}_{25-35}$ alone. The neuroprotective effect of citrate against $A{\beta}$-induced toxicity in PC12 cells was investigated using the WST-1 assay. Fluorescence spectroscopy showed that citrate inhibited dose-dependently the formation of $A{\beta}$ fibrils from ${\beta}$-amyloid peptides. The inhibition percentages of $A{\beta}$ fibril formation by citrate (1, 2.5, and 5 mM) were 31%, 60%, and 68% at 7 days, respectively in thioflavin-T (Th-T) assay. WST-1 assay revealed that the toxic effect of $A{\beta}_{25-35}$ was reduced, in a dose-dependent manner to citrate. The percentages of neuroprotection by citrate (1, 2.5, and 5 mM) against $A{\beta}-induced$ toxicity were 19%, 31 %, and 34%, respectively. We report that citrate inhibits the formation of $A{\beta}$ fibrils in vitro and has neuroprotective effect against $A{\beta}$-induced toxicity in PC12 cells. Neuroprotective effects of citrate against $A{\beta}$ might be, to some extent, attributable to its inhibition of $A{\beta}$ fibril formation. Although the mechanism of anti-amyloidogenic activity is not clear, the possible mechanism is that citrate might have two effects, salting-in and surfactant effects. These results suggest that citrate could be of potential therapeutic value in Alzheimer's disease.

Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein

  • Chun, Yoon Sun;Kwon, Oh-Hoon;Oh, Hyun Geun;Cho, Yoon Young;Yang, Hyun Ok;Chung, Sungkwon
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.276-282
    • /
    • 2019
  • ${\beta}$-amyloid precursor protein (APP) can be cleaved by ${\alpha}$-, and ${\gamma}$-secretase at plasma membrane producing soluble ectodomain fragment ($sAPP{\alpha}$). Alternatively, following endocytosis, APP is cleaved by ${\beta}$-, and ${\gamma}$-secretase at early endosomes generating ${\beta}$-amyloid ($A{\beta}$), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for $A{\beta}$ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased $A{\beta}$ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on $A{\beta}$ production. We found that justicidin A reduced endocytosis of APP, increasing $sAPP{\alpha}$ level, while decreasing $A{\beta}$ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on $A{\beta}$ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.

Purification and characterization of a 1,3-β-D-glucan recognition protein from Antheraea pernyi larve that is regulated after a specific immune challenge

  • Youlei, Ma;Jinghai, Zhang;Yuntao, Zhang;Jiaoshu, Lin;Tianyi, Wang;Chunfu, Wu;Rong, Zhang
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.264-269
    • /
    • 2013
  • Pattern recognition receptors are known to participate in the activation of Prophenoloxidase system. In this study, a 1,3-${\beta}$-D-glucan recognition protein was detected for the first time in Antheraea pernyi larvae (Ap-${\beta}GRP$). Ap-${\beta}GRP$ was purified to 99.9% homogeneity from the hemolymph using traditional chromatographic methods. Ap-${\beta}GRP$ specifically bind 1,3-${\beta}$-D-glucan and yeast, but not E. coli or M. luteus. The 1,3-${\beta}$-D-glucan dependent phenoloxidase (PO) activity of the hemolymph inhibited by anti-Ap-${\beta}GRP$ antibody could be recovered by addition of purified Ap-${\beta}GRP$. These results demonstrate that Ap-${\beta}GRP$ acts as a biosensor of 1,3-${\beta}$-Dglucan to trigger the Prophenoloxidase system. A trace mount of 1,3-${\beta}$-D-glucan or Ap-${\beta}GRP$ alone was unable to trigger the proPO system, but they both did. Ap-${\beta}GRP$ was specifically degraded following the activation of proPO with 1,3-${\beta}$-Dglucan. These results indicate the variation in the amount of Ap-${\beta}GRP$ after specific immune challenge in A. pernyi hemolymph is an important regulation mechanism to immune response.

Sesaminol Glucosides의 기억력 회복능 및 ${\beta}$, ${\gamma}$-Secretase (Protective Effect of Sesaminol Glucosides on Memory Impairment and ${\beta}$, ${\gamma}$-Secretase Activity In Vivo)

  • 이선영;손동주;하태열;홍진태
    • 약학회지
    • /
    • 제49권2호
    • /
    • pp.168-173
    • /
    • 2005
  • Alzheimers disease (AD) is the most prevalent form of neurodegenerations associated with aging in the human population. This disease is characterized by the extracellular deposition of beta-amyloid (A ${\beta}$) peptide in cerebral plaques. The A ${\beta}$ peptide is derived from the ${\beta}$-amyloid precursor protein ( ${\beta}$APP). Photolytic processing of ${\beta}$APP by ${\beta}$-secretase(beta-site APP-cleaving enzyme, BASE) and ${\gamma}$-secretase generates the A ${\beta}$ peptide. Several lines of evidence support that A ${\beta}$-induced neuronal cell death is major mechanisms of development of AD. Accordingly, the ${\beta}$-and ${\gamma}$-secretase have been implicated to be excellent targets for the treatment of AD. We previously found that sesaminol glucosides have improving effect on memory functions through anti-oxidative mechanism. In this study, to elucidate possible other mechanism (inhibition of ${\beta}$-and ${\gamma}$-secretase) of sesaminol glucosides, we examined the improving effect of sesaminol glucosides in the scopolamine (1 mg/kg/mouse)-induced memory dysfunction using water maze test in the mice. Sesaminol glucosides (3.75, 7.5 mg/kg/6ml/day p.o., for 3 weeks) reversed the latency time, distance and velocity by scopolamine in dose dependent manner. Next, ${\beta}$-and ${\gamma}$-secretase activities were determined in different regions of brain. Sesaminol glucosides dose-dependently attenuated scopolamine-induced ${\beta}$-secretase activities in cortex and hippocampous and ${\gamma}$-secretase in cortex. This study therefore suggests that sesaminol glucosides may be a useful agent for prevention of the development or progression of AD, and its inhibitory effect on secretase may play a role in the improving action of sesaminol glucosides on memory function.

ON THE BERWALD CONNECTION OF A FINSLER SPACE WITH A SPECIAL $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.355-364
    • /
    • 1997
  • In a Finsler space, we introduce a special $(\alpha,\beta)$-metric L satisfying $L^2(\alpha,\beta) = c_1\alpha^2 + 2c_2\alpha\beta + c_3\beta^2$, which $c_i$ are constants. We investigate the Berwald connection in a Finsler space with this special $\alpha,\beta)$-metric.

  • PDF

In Vitro Antioxidant Activity Profiles of ${\beta}$-Glucans Isolated from Yeast Saccharomyces cerevisiae and Mutant Saccharomyces cerevisiae IS2

  • Song, Hee-Sun;Moon, Ki-Young
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.437-440
    • /
    • 2006
  • To explore the possible usefulness of ${\beta}$-glucans as natural antioxidants, the antioxidant profiles of ${\beta}$-glucan, extracted from Saccharomyces cerevisiae KCTC 7911, and water soluble and insoluble mutant ${\beta}$-glucan, isolated from yeast mutant S. cerevisiae IS2, were examined by five different in vitro evaluation methods: lipid peroxidation value (POV), nitric oxide (NO), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, reducing power, and ${\beta}$-carotene diffusion assay. The antioxidant activities of all ${\beta}$-glucans evaluated in POV test were comparable to or better than that of the known antioxidant, vitamin C. Remarkably, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan possessed 2.5-fold more potent activity than vitamin C at a dosage of 2 mg. Although vitamin C showed 100-fold greater activity than all ${\beta}$-glucans in NO and DPPH tests for measuring the radical scavenging capacity, all ${\beta}$-glucans revealed higher radical scavenging activity than the known radical scavenger, N-acetyl-L-cysteine (NAC), in DPPH test. The water insoluble mutant ${\beta}$-glucan had 2.6- and 5-fold greater antioxidative activity than water soluble ${\beta}$-glucan in NO and DPPH tests, respectively, showing that all ${\beta}$-glucans were able to scavenge radicals such as NO or DPPH. While all ${\beta}$-glucans revealed lower antioxidant profiles than vitamin C in both reducing power activity and ${\beta}$-carotene agar diffusion assay, the ${\beta}$-glucan and water insoluble mutant ${\beta}$-glucan did show a marginal reducing power activity as well as a considerable ${\beta}$-carotene agar diffusion activity. These results confirmed the potential usefulness of these ${\beta}$-glucans as natural antioxidants.

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease

  • Yoon, Sang-Sun;AhnJo, Sang-Mee
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.245-255
    • /
    • 2012
  • Amyloid-${\beta}$ peptide ($A{\beta}$) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduction of $A{\beta}$ in the brain. Since accumulation of $A{\beta}$ depends on the rate of its synthesis and clearance, the metabolic pathway of $A{\beta}$ in the brain and the whole body should be carefully explored for AD research. Although the synthetic pathway of $A{\beta}$ is equally important, we summarize primarily the clearance pathway in this paper because the former has been extensively reviewed in previous studies. The clearance of $A{\beta}$ from the brain is accomplished by several mechanisms which include non-enzymatic and enzymatic pathways. Nonenzymatic pathway includes interstitial fluid drainage, uptake by microglial phagocytosis, and transport across the blood vessel walls into the circulation. Multiple $A{\beta}$-degrading enzymes (ADE) implicated in the clearance process have been identified, which include neprilysin, insulin-degrading enzyme, matrix metalloproteinase-9, glutamate carboxypeptidase II and others. A series of studies on $A{\beta}$ clearance mechanism provide new insight into the pathogenesis of AD at the molecular level and suggest a new target for the development of novel therapeutics.

$A{\beta}42$의 섬유화 및 독성에 대한 ${\beta}$-Asarone의 저해 효과 (Inhibition of $A{\beta}42$ Fibrillation and Toxicity with ${\beta}$-Asarone)

  • 김지아;이철원;이부균;이장천;안원근
    • 동의생리병리학회지
    • /
    • 제28권3호
    • /
    • pp.317-321
    • /
    • 2014
  • Amyloid-${\beta}$ protein ($A{\beta}$) is a pathological component of Alzheimer's disease (AD) by participating in the senile plaque formation in the patient's brain. Although the exact mechanism of $A{\beta}$ toxicity is not fully elucidated, it is considered to be closely related to its fibrillation process. For prevention of AD, recent studies have suggested various small molecules which inhibit $A{\beta}$ fibrillation. In this report, ${\beta}$-asarone found in acorus plant has been investigated as an anti-amyloid molecule. ${\beta}$-Asarone was demonstrated to prevent in vitro fibrillation of $A{\beta}$ by inducing the oligomer formation that obviously decreased cytotoxicity. Therefore, ${\beta}$-asarone could be suggested as an inhibitory agent of $A{\beta}$ fibrillation and toxicity, which would help us not only to understand underlying principle of amyloidogenesis mechanism but also to develop a controlling strategy toward AD.

Development of TGF-$\beta$ Resistance During Malignant Progression

  • Kim, Yong-Seok;Yi, Young-Suk;Choi, Shin-Geon;Kim, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 1999
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is the prototypical multifunctional cytokine, participating in the regulation of vital cellular activities such as proliferation and differentiations as well as a number of basic physiological functions. The effects of TGF-$\beta$ are critically dependent on the expression and distribution of a family of TGF-$\beta$ receptors, the TGF-$\beta$ types I, II, and III. It is now known that a wide variety of human pathology can be caused by aberrant expression and function of these receptors. the coding sequence of the type II receptor (RII) appears to render it uniquely susceptible to DNA replication errors in the course of normal cell division. By virtue of its key role in the regulation of cell proliferation, TGF-$\beta$ RII should be considered as a tumor suppressor gene. High levels of mutation in the TGF-$\beta$ RII gene have been observed in a wide range of primarily epithelial malignancies, including colon and gastric cancer. It appears likely that mutation of the TGF-$\beta$ RII gene may be a very critical step in the pathway of carcinogenesis.

  • PDF