Protective Effect of Sesaminol Glucosides on Memory Impairment and ${\beta}$, ${\gamma}$-Secretase Activity In Vivo

Sesaminol Glucosides의 기억력 회복능 및 ${\beta}$, ${\gamma}$-Secretase

  • Published : 2005.01.01

Abstract

Alzheimers disease (AD) is the most prevalent form of neurodegenerations associated with aging in the human population. This disease is characterized by the extracellular deposition of beta-amyloid (A ${\beta}$) peptide in cerebral plaques. The A ${\beta}$ peptide is derived from the ${\beta}$-amyloid precursor protein ( ${\beta}$APP). Photolytic processing of ${\beta}$APP by ${\beta}$-secretase(beta-site APP-cleaving enzyme, BASE) and ${\gamma}$-secretase generates the A ${\beta}$ peptide. Several lines of evidence support that A ${\beta}$-induced neuronal cell death is major mechanisms of development of AD. Accordingly, the ${\beta}$-and ${\gamma}$-secretase have been implicated to be excellent targets for the treatment of AD. We previously found that sesaminol glucosides have improving effect on memory functions through anti-oxidative mechanism. In this study, to elucidate possible other mechanism (inhibition of ${\beta}$-and ${\gamma}$-secretase) of sesaminol glucosides, we examined the improving effect of sesaminol glucosides in the scopolamine (1 mg/kg/mouse)-induced memory dysfunction using water maze test in the mice. Sesaminol glucosides (3.75, 7.5 mg/kg/6ml/day p.o., for 3 weeks) reversed the latency time, distance and velocity by scopolamine in dose dependent manner. Next, ${\beta}$-and ${\gamma}$-secretase activities were determined in different regions of brain. Sesaminol glucosides dose-dependently attenuated scopolamine-induced ${\beta}$-secretase activities in cortex and hippocampous and ${\gamma}$-secretase in cortex. This study therefore suggests that sesaminol glucosides may be a useful agent for prevention of the development or progression of AD, and its inhibitory effect on secretase may play a role in the improving action of sesaminol glucosides on memory function.

Keywords

References

  1. Hardy, J. A. and Higgins, G. A : Alzheimer's disease: the amyloid cascade hypothesis. Science 10, 184 (1992)
  2. Checler; F. : Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease. J. Neurochem. 65, 1431 (1995) https://doi.org/10.1046/j.1471-4159.1995.65041431.x
  3. Hardy, J. : Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 4, 154 (1997)
  4. Hwang, D. Y., Chae, K. R., Kang, T. S, Hwang, J. H., Lim, C. H., Kang, H. K, Goo, J. S., Lee, M. R., Lim, H. J, Min, S. H., Cho, J. Y., Hong, J. T., Song, C. W, Paik, S. G., Cho, J. S. and Kim, Y. K : Alterations in behavior, amyloid beta-42, caspase3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J. 16, 805 (2002) https://doi.org/10.1096/fj.01-0732com
  5. Ho, P. I., Collins, S. C., Dhitavat, S., Ortiz, D., Ashline, D., Rogers, E. and Shea, T. B. : Homocysteine potentiates beta amyloid neurotoxicity: role of oxidative stress. J. Neurochem. 78, 249 (2001) https://doi.org/10.1046/j.1471-4159.2001.00397.x
  6. Abramov, A. Y., Canevari, L. and Duchen, M. R. : Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 15, 5088 (2003)
  7. Parks,J. K., Smith, T. S., Trimmer, P. A., Bennett,J. P. Jr. and Parker, W. D. Jr. : Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxidesynthase mechanisms, and inhibit complex N activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76, 1050 (2001) https://doi.org/10.1046/j.1471-4159.2001.00112.x
  8. Butterfield, D. A. : beta-Amyloid-associated free radical oxidative stress and neurotoxicity : implications for Alzheimer's disease. Chem. Res. Toxicol. 10, 495 (1997) https://doi.org/10.1021/tx960130e
  9. Pappolla, M. A., Chyan, Y.J., Omar, R. A., Hsiao, K., Perry, G., Smith, M. A and Bozner, P. : Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J Pathol. 152, 871 (1998)
  10. Jain, N. K., Patil, C. S., Kulkarni, S. K. and Singh, A. : Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav. Brain Res. 133, 369 (2002) https://doi.org/10.1016/S0166-4328(02)00025-6
  11. Zhu, X., Raina, A. K., Lee, H. G., Casadesus, G., Smith, M. A. and Perry, G. : Oxidative stress signalling in Alzheimer's disease. Brain Res. 1000, 32 (2004) https://doi.org/10.1016/j.brainres.2004.01.012
  12. Harris, M. E., Hensley; K, Butterfield, D. A., Leedle, R. A. and Carney; J. M. : Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp. Neurol. 131, 193 (1995) https://doi.org/10.1016/0014-4886(95)90002-0
  13. Wang, J. Y, Shum, A. Y., Ho, Y. J. and Wang, J. Y. : Oxidative neurotoxicity in rat cerebral cortex neurons: synergistic effects of $H_2O_2$ and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspaase-3. J. Neurosci. Res. 72, 508 (2003) https://doi.org/10.1002/jnr.10597
  14. Hock, C., Konietzko, U., Streffer, J. R., Tracy; J., Signorell, A., Muller-Tillmanns, B., Lemke, U., Henke, K, Moritz, E., Garcia, E., Wollmer, M. A., Umbricht, D., de Quervain, D. J., Hofmann, M., Maddalena, A., Papassotiropoulos, A. and Nitsch, R. M. : Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron 22, 547 (2003)
  15. De Pietri Tonelli, D., Mihailovich, M., Di Cesare, A., Codazzi, F., Grohovaz, F. and Zacchetti D. : Translational regulation of BACE-1 expression in neuronal and non-neuronal cells. Nucleic Acids Res. 32, 1808 (2004) https://doi.org/10.1093/nar/gkh348
  16. Zhao, J., Paganini, L., Mucke, L., Gordon, M., Refolo, L., Carman, M., Sinha, S., Oltersdorf, T., Lieberburg, I. and McConlogue, L. : Beta-secretase processing of the betaamyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J. Biol. Chem. 271, 31407 (1996) https://doi.org/10.1074/jbc.271.49.31407
  17. Dajas, F., Rivera, F, Blasina, F, Arredondo, F, Echeverry, C., Lafon, L., Morquio, A. and Heizen, H. : Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox. Res. 5, 425 (2003) https://doi.org/10.1007/BF03033172
  18. Lin, A. M., Chyi, B. Y., Wu, L. Y, Hwang, L. S. and Ho, L. T. : The antioxidative property of green tea against iron-induced oxidative stress in rat brain. Chin. J. Physiol. 41, 189 (1998)
  19. Choi, Y. T., Jung, C. H., Lee, S. R., Bae, J. H., Baek, W. K., Suh, M. H., Park, J., Park, C. W and Suh, S. I. : The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloidinduced neurotoxicity in cultured hippocampal neurons. Life Sci. 21, 603 (2001)
  20. Mazzio, E. A., Harris, N. and Soliman, K. F. : Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta. Med. 64, 603 (1998) https://doi.org/10.1055/s-2006-957530
  21. Hong, J. T., Ryu, S. R, Kim, H. J., Lee, J. K., Lee, S. H., Yun, Y. P., Lee, B. M. and Kim, P. Y. : Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res. 5, 11 (2001)
  22. Kang, M. H., Naito, M., Tsujihara, N. and Osawa, T. : Sesamolin inhibits lipid peroxidation in rat liver and kidney. J. Nutr. 128, 1018 (1998) https://doi.org/10.1093/jn/128.6.1018
  23. Grundman, M., Grundman, M. and Delaney, P. : Antioxidant strategies for Alzheimer's disease. Proc. Nutr. Soc. 61, 191 (2002)
  24. Nitsch, R. M., Slack, B. E., Wurtman, R. J. and Growdon, J. H. : Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258, 304 (1992) https://doi.org/10.1126/science.1359643
  25. Mori, F., Lai, C. C., Fusi, F. and Giacobini, E. : Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neuroreport 6, 633 (1995) https://doi.org/10.1097/00001756-199503000-00012
  26. Katsuzaki, H., Kawakishi, S. and Osawa, T. : Sesaminol glucosides in sesame seeds. Phytochemistry 35, 773 (1994) https://doi.org/10.1016/S0031-9422(00)90603-4
  27. Kim, S. R., Um, M. Y., Ahn, J. Y., Hong, J. T. and Ha, T. Y. : The Protective effects of sesaminol glycosides against cognitive deficits and oxidative stress induced by beta-amyloid protein in mice. Physiologic Functions and Disease Risk Reduction 3, 120 (2003)
  28. Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. and Hass, C. A. : A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 633 (2002)
  29. Selkoe, D. J. ; Amyloid beta-protein and the genetics of Alzheimers disease. J. Biol. Chem. 271, 18295 (1996) https://doi.org/10.1074/jbc.271.31.18295
  30. Behl, C., Davis, J. B., Lesley, R. and Schubert, D. : Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817 (1994) https://doi.org/10.1016/0092-8674(94)90131-7
  31. Lee, S. Y., Ha, T. Y., Son, D. J., Oh, K .W. and Hong, J. T. : Effect of sesaminol glucosides on ${\beta}$-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci. Res. in press