DOI QR코드

DOI QR Code

Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein

  • Chun, Yoon Sun (Department of Physiology, Sungkyunkwan University School of Medicine) ;
  • Kwon, Oh-Hoon (Department of Physiology, Sungkyunkwan University School of Medicine) ;
  • Oh, Hyun Geun (Department of Physiology, Sungkyunkwan University School of Medicine) ;
  • Cho, Yoon Young (Department of Physiology, Sungkyunkwan University School of Medicine) ;
  • Yang, Hyun Ok (Natural Products Research Center, Korea Institute of Science and Technology) ;
  • Chung, Sungkwon (Department of Physiology, Sungkyunkwan University School of Medicine)
  • Received : 2018.06.19
  • Accepted : 2018.09.01
  • Published : 2019.05.01

Abstract

${\beta}$-amyloid precursor protein (APP) can be cleaved by ${\alpha}$-, and ${\gamma}$-secretase at plasma membrane producing soluble ectodomain fragment ($sAPP{\alpha}$). Alternatively, following endocytosis, APP is cleaved by ${\beta}$-, and ${\gamma}$-secretase at early endosomes generating ${\beta}$-amyloid ($A{\beta}$), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for $A{\beta}$ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased $A{\beta}$ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on $A{\beta}$ production. We found that justicidin A reduced endocytosis of APP, increasing $sAPP{\alpha}$ level, while decreasing $A{\beta}$ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on $A{\beta}$ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.

Keywords

References

  1. Buxbaum, J. D., Liu, K. N., Luo, Y., Slack, J. L., Stocking, K. L., Peschon, J. J., Johnson, R. S., Castner, B. J., Cerretti, D. P. and Black, R. A. (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27765-27767. https://doi.org/10.1074/jbc.273.43.27765
  2. Carey, R. M., Balcz, B. A., Lopez-Coviella, I. and Slack, B. E. (2005) Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor protein ectodomain and reduces generation of amyloid beta protein. BMC Cell Biol. 6, 30-40. https://doi.org/10.1186/1471-2121-6-30
  3. Chun, Y. S., Kim, J., Chung, S., Khorombi, E., Naidoo, D., Nthambeleni, R., Harding, N., Maharaj, V., Fouche, G. and Yang, H. O. (2017) Protective roles of Monsonia angustifolia and its active compounds in experimental models of Alzheimer's disease. J. Agric. Food Chem. 65, 3133-3140. https://doi.org/10.1021/acs.jafc.6b04451
  4. Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., Bu, G., Mennerick, S. and Holtzman, D. M. (2008) Endocytosis is required for synaptic activity-dependent release of amyloidbeta in vivo. Neuron 58, 42-51. https://doi.org/10.1016/j.neuron.2008.02.003
  5. Doherty, G. J. and McMahon, H. T. (2009) Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857-902. https://doi.org/10.1146/annurev.biochem.78.081307.110540
  6. Ehlers, M. D. (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511-525. https://doi.org/10.1016/S0896-6273(00)00129-X
  7. Graebert, K. S., Popp, G. M., Kehlw, T. and Herzog, V. (1995) Regulated O-glycosylation of the Alzheimer beta-A4 amyloid precursor protein in thyrocytes. Eur. J. Cell Biol. 66, 39-46.
  8. Grbovic, O. M., Mathews, P. M., Jiang, Y., Schmidt, S. D., Dinakar, R., Summers-Terio, N. B., Ceresa, B. P., Nixon, R. A. and Cataldo, A. M. (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J. Biol. Chem. 278, 31261-31268. https://doi.org/10.1074/jbc.M304122200
  9. Gu, M. Y., Kim, J. and Yang, H. O. (2016) The neuroprotective effects of justicidin A on amyloid beta25-35-induced neuronal cell death through inhibition of tau hyperphosphorylation and induction of autophagy in SH-SY5Y cells. Neurochem. Res. 41, 1458-1467. https://doi.org/10.1007/s11064-016-1857-5
  10. Guo, Q., Robinson, N. and Mattson, M. P. (1998) Secreted beta-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J. Biol. Chem. 273, 12341-12351. https://doi.org/10.1074/jbc.273.20.12341
  11. Haass, C., Hung, A. Y. and Selkoe, D. J. (1991) Processing of beta amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J. Neurosci. 11, 3783-3793. https://doi.org/10.1523/JNEUROSCI.11-12-03783.1991
  12. Kogel, D., Deller, T. and Behl, C. (2012) Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging. Exp. Brain Res. 217, 471-479. https://doi.org/10.1007/s00221-011-2932-4
  13. Koo, E. H. and Squazzo, S. L. (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386-17389. https://doi.org/10.1016/S0021-9258(17)32449-3
  14. Koo, E. H., Squazzo, S. L., Selkoe, D. J. and Koo, C. H. (1996) Trafficking of cell-surface amyloid beta-protein precursor. I. Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. J. Cell Sci. 109, 991-998. https://doi.org/10.1242/jcs.109.5.991
  15. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. and Fahrenholz, F. (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. U.S.A. 96, 3922-3927. https://doi.org/10.1073/pnas.96.7.3922
  16. Lyimo, M., Temu, R. P. and Mugula, J. K. (2003) Identification and nutrient composition of indigenous vegetables of Tanzania. Plant Foods Hum. Nutr. 58, 85-92. https://doi.org/10.1023/A:1024044831196
  17. Mattson, M. P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081-1132. https://doi.org/10.1152/physrev.1997.77.4.1081
  18. Morimoto, T., Ohsawa, I,, Takamura, C., Ishiguro, M. and Kohsaka, S. (1998) Involvement of amyloid precursor protein in functional synapse formation in cultured hippocampal neurons. J. Neurosci. Res. 51, 185-195. https://doi.org/10.1002/(SICI)1097-4547(19980115)51:2<185::AID-JNR7>3.0.CO;2-9
  19. Pahlsson, P., Shakin-Eshleman, S. H. and Spitalnik, S. L. (1992) N-linked glycosylation of beta-amyloid precursor protein. Biochem. Biophys. Res. Commun. 189, 1667-1673. https://doi.org/10.1016/0006-291X(92)90269-Q
  20. Parvathy, S., Hussain, I., Karran, E. H., Turner, A. J. and Hooper, N. M. (1999) Cleavage of Alzheimer's amyloid precursor protein by alpha-secretase occurs at the surface of neuronal cells. Biochemistry 38, 9728-9734. https://doi.org/10.1021/bi9906827
  21. Perez, R. G., Soriano, S., Hayes, J. D., Ostaszewski, B., Xia, W., Selkoe, D. J., Chen, X., Stokin, G. B. and Koo, E. H. (1999) Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J. Biol. Chem. 274, 18851-18856. https://doi.org/10.1074/jbc.274.27.18851
  22. Ring, S., Weyer, S. W., Kilian, S. B., Waldron, E., Pietrzik, C. U., Filippov, M. A., Herms, J., Buchholz, C., Eckman, C. B., Korte, M., Wolfer, D. P. and Muller, U. C. (2007) The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci. 27, 7817-7826. https://doi.org/10.1523/JNEUROSCI.1026-07.2007
  23. Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X. D., McKay, D. M., Tintner, R., Frangione, B. and Younkin, S. G. (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258, 126-129. https://doi.org/10.1126/science.1439760
  24. Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, H. F. Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., Zhao, J., McConlogue, L. and John, V. (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537-540. https://doi.org/10.1038/990114
  25. Thinakaran, G. and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615-29619. https://doi.org/10.1074/jbc.R800019200
  26. Tomita, S., Kirino, Y. and Suzuki, T. (1998) Cleavage of Alzheimer's amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J. Biol. Chem. 273, 6277-6284. https://doi.org/10.1074/jbc.273.11.6277
  27. Urrutia, R., Henley, J. R., Cook, T. and McNiven, M. A. (1997) The dynamins: Redundant or distinct functions for an expanding family of related GTPases? Proc. Natl. Acad. Sci. U. S. A. 94, 377-384. https://doi.org/10.1073/pnas.94.2.377
  28. Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G. and Citron, M. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735-741. https://doi.org/10.1126/science.286.5440.735
  29. Wang, L. H., Rothberg, K. G. and Anderson, R. G. (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107-1117. https://doi.org/10.1083/jcb.123.5.1107
  30. Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L. and Beyreuther, K. (1989) Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115-126. https://doi.org/10.1016/0092-8674(89)90177-3
  31. Yoon, S.-S. and Jo, S. A. (2012) Mechanisms of amyloid-${\beta}$ peptide clearance: potential therapeutic targets for Alzheimer's disease. Biomol. Ther. (Seoul) 20, 245-255. https://doi.org/10.4062/biomolther.2012.20.3.245

Cited by

  1. Cholinergic-like neurons carrying PSEN1 E280A mutation from familial Alzheimer’s disease reveal intraneuronal sAPPβ fragments accumulation, hyperphosphorylation of TAU, oxidative stress, ap vol.15, pp.5, 2020, https://doi.org/10.1371/journal.pone.0221669