Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.5.222

Purification and characterization of a 1,3-β-D-glucan recognition protein from Antheraea pernyi larve that is regulated after a specific immune challenge  

Youlei, Ma (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Jinghai, Zhang (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Yuntao, Zhang (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Jiaoshu, Lin (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Tianyi, Wang (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Chunfu, Wu (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Rong, Zhang (School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University)
Publication Information
BMB Reports / v.46, no.5, 2013 , pp. 264-269 More about this Journal
Abstract
Pattern recognition receptors are known to participate in the activation of Prophenoloxidase system. In this study, a 1,3-${\beta}$-D-glucan recognition protein was detected for the first time in Antheraea pernyi larvae (Ap-${\beta}GRP$). Ap-${\beta}GRP$ was purified to 99.9% homogeneity from the hemolymph using traditional chromatographic methods. Ap-${\beta}GRP$ specifically bind 1,3-${\beta}$-D-glucan and yeast, but not E. coli or M. luteus. The 1,3-${\beta}$-D-glucan dependent phenoloxidase (PO) activity of the hemolymph inhibited by anti-Ap-${\beta}GRP$ antibody could be recovered by addition of purified Ap-${\beta}GRP$. These results demonstrate that Ap-${\beta}GRP$ acts as a biosensor of 1,3-${\beta}$-Dglucan to trigger the Prophenoloxidase system. A trace mount of 1,3-${\beta}$-D-glucan or Ap-${\beta}GRP$ alone was unable to trigger the proPO system, but they both did. Ap-${\beta}GRP$ was specifically degraded following the activation of proPO with 1,3-${\beta}$-Dglucan. These results indicate the variation in the amount of Ap-${\beta}GRP$ after specific immune challenge in A. pernyi hemolymph is an important regulation mechanism to immune response.
Keywords
Antheraea pernyi; Innate immunity; Phenoloxidase (PO); Prophenoloxidase (proPO) system; 1,3-${\beta}$-D-glucan recognition protein(${\beta}GRP$);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, R., Cho, H. Y., Kim, H. S., Ma, Y. G., Osaki, T., Kwabata, S., Soderhäll, K. and Lee, B. L. (2003) Characterization and properties of a 1,3-$\beta$-D-glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation. J. Biol. Chem. 278, 42072-42079.   DOI   ScienceOn
2 Fabrick, J. A., Baker, J. E. and Kanost, M. R. (2003) cDNA cloning, purification, properties, and function of a $\beta$-1,3-glucan recognition protein from a pyralid moth, Plodia interpunctella. Insect Biochem. Mol. Biol. 33, 579-594.   DOI   ScienceOn
3 Yahata, N., Watanabe, T., Nakamura, Y., Yamamoto, Y., Kamimiya, S. and Tanaka, H. (1990) Structure of the gene encoding beta-1,3-glucanase A1 of Bacillus circulans WL-12. Gene (Amst.) 86, 113-117.   DOI   ScienceOn
4 Bachman, E. S. and McClay, D. R. (1996) Molecular cloning of the first metazoan $\beta$-1,3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proc. Natl. Acad. Sci. 93, 6808-6813.   DOI   ScienceOn
5 Takahasi, K., Ochiai, M., Horiuchi, M., Kumeta, H., Ogura, K., Ashida, M. and Inagaki, F. (2009) Solution structure of the silkworm $\beta GRP/GNBP3$ N-terminal domain reveals the mechanism for $\beta$-1,3-glucan-specific recognition. Proc. Natl. Acad. Sci. U. S. A. 106, 11679-11684.   DOI   ScienceOn
6 Nappi, A. J. and Christensen, B. M. (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem. Mol. Biol. 35, 443-459.   DOI   ScienceOn
7 Zhao, P., Li, J., Wang, Y. and Jiang, H. (2007) Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem. Mol. Biol. 37, 952-959.   DOI   ScienceOn
8 Tanaka, H., Ishibashi, J., Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y., Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K. and Yamakawa, M. (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 38, 1087-1110.   DOI   ScienceOn
9 Wang, Y. and Jiang, H. (2004) Purification and characterization of Manduca sexta serpin-6: a serine proteinase inhibitor that selectively inhibits prophenoloxidase activating proteinase-3. Insect Biochem. Mol. Biol. 34, 387-395.   DOI   ScienceOn
10 Sohal, R. S. (1988) Effect of hydrogen peroxide administration on life span, superoxide dismutase, catalase, and glutathione in the adult housefly. Musca domestica. Exp. Gerontol. 23, 211-216.   DOI   ScienceOn
11 Zhang, G., Lu, Z. Q., Jiang, H. and Sassan, A. (2004) Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem. Mol. Biol. 34, 477-483.   DOI   ScienceOn
12 McCauley, R. and Racker, E. (1973) Separation of two monoamine oxidases from bovine brain. Molec. Cell Biochem. 1, 73-81.   DOI
13 Cho, M. Y., Lee, H. S., Lee, K. M., Homma, K. I., Natori, S. and Lee, B. L. (1999) Molecular cloning and functional properties of two early-stage encapsulation-relating proteins from the coleopteran insect, Tenebrio molitor larvae. Eur. J. Biochem. 262, 737-744.   DOI   ScienceOn
14 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature. 227, 680-685.   DOI   ScienceOn
15 Ochiai, M. and Ashida, M. (2000) A pattern-recognition protein for $\beta$-1,3-glucan: the binding domain and the cDNA cloning of $\beta$-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. Biol. Chem. 275, 4995-5002.   DOI   ScienceOn
16 Yu, X. Q. and Kanost, M. R., (2002) Binding of hemolin to microbial lipopolysacchaaride and lipoteichoic acid: an immunoglobulin superfamily member from insects as a pattern recognition receptor. Eur. J. Biochem. 269, 1827-1834.   DOI   ScienceOn
17 Ma, C. and Kanost, M. R. (2000) A $\beta$-1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J. Biol. Chem. 275, 7505-7514.   DOI   ScienceOn
18 Lee, S. Y., Wang, R. and Soderhäll, K. (2000) A lipopolysaccharide and $\beta$-1,3-glucan binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. J. Biol. Chem. 275, 1337-1343.   DOI   ScienceOn
19 Jiang, H., Ma, C., Lu, Z. Q. and Kanost, M. R. (2004) $\beta$-1,3-glucan recognition protein-2 ($\beta GRP$-2) from Manduca sexta; an acute-phase protein that binds $\beta$-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activationInsect. Biochem. Mol. Biol. 34, 89-100.   DOI   ScienceOn
20 Pauchet, Y., Freitak, D., Heidel-Fischer, H. M., Heckel, D. G. and Vogel, H. (2009) Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. J. Biol. Chem. 284, 2214-2224.   DOI   ScienceOn
21 Wang, X., Fuchs, J. F., Infanger, L. C., Rocheleau, T. A. and Hillyer, J. F. (2005) Mosquito innate immunity: involvement of $\beta$-1,3-glucan recognition protein in melanotic encapsulation immune responses in Armigeres subalbatus. Mol. Biochem. Para. 139, 65-73.   DOI   ScienceOn
22 Zhu, Y., Wang, Y., Gorman, M. J., Jiang, H. and Kanost, M. R. (2003) Manduca sexta Serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases. J. Biol. Chem. 278, 46556-46564.   DOI   ScienceOn
23 Soderhäll, K. and Cerenius, L. (1998) Role of the prophenoloxidase activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23-28.   DOI   ScienceOn
24 Sugumaran, M. (1998) Characterization of phenoloxidase complexes. in Techniques in insect immunology, Andreas W., Dumphy, A. G. and Marmaras, V. J. (eds.), pp. 205-215. SOS Publications, Fair Haven, NJ, USA.
25 Jomori, T. and Natori, S. (1991) Molecular cloning of cDNA for lipopolysaccharide binding protein from the hemolymph of the American cockroach. Periplaneta americana- similarity of the protein with animal lectins and its acute phase expression. J. Biol. Chem. 266, 13318-13323.
26 Medzhitov, R. and Janeway, J. A. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296, 298-300.   DOI   ScienceOn
27 Jiravanichpaisal, P., Lee, B. L. and Soderhäll, K. (2006) Cell mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 11, 213-236.
28 Ochiai, M. and Ashida, M. (1999) A pattern recognition protein for peptidoglycan cloning the cDNA and the gene of the silkworm, Bombyx mori. J. Biol. Chem. 274, 11854-11858.   DOI   ScienceOn
29 Bezouska, K., Vlahas, G., Horvath, O., Jinochova, G., Fiserova, A., Giorda, R., Chambers, Wh., Feizi, T. and Pospisil, M. (1994) Rat natural killer cell antigen. NKR-P1, related to C-type animal lectins is a carbohydrate-binding protein. J. Biol. Chem. 2269, 16945-16952.