• Title/Summary/Keyword: ${\alpha}-glucosidase$ inhibition activity

Search Result 229, Processing Time 0.023 seconds

Antioxidant and Anti-Diabetic, Anti-Alzheimer Activities of Stem from Opuntia ficus-indica var. saboten Cultivated in Jeju at Harvest Time (채취시기별 보검선인장 줄기의 항산화, 항당뇨 및 항알츠하이머 활성평가)

  • Jeong, Yun Sook;Hwang, Byung Soon;Cho, Soo-Muk;Hwang, Kyung-A;Hwang, In Guk
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1332-1340
    • /
    • 2017
  • In this study, we assessed antioxidant, anti-diabetic, and anti-Alzheimer activities of Opuntia ficus-indica var. saboten (OFI) at harvest time. OFIs were cultivated December 2015~November 2016 in Jeju island. The 70% ethanol extracts of OFI were used to investigate total polyphenol and flavonoid contents, antioxidant(DPPH and ABTS radical scavenging assay), anti-diabetic(yeast ${\alpha}$-glucosidase and rat ${\alpha}$-glucosidase inhibition assay), and anti-Alzheimer(Acetylcholinesterase and butyrylcholinesterase inhibition assay) activities. Total polyphenol and flavonoid contents of OFIs were $17.40{\sim}23.11{\mu}g$ garlic acid/mg Ex and 2.17~6.22 ug (+)-catechine/mg Ex, respectively. DPPH and ABTS radical scavenging activity of OFIs were 131.98~184.90 mg ascorbic acid(AA) eq/100 g and 63.60~101.83 mg AA eq/100 g, respectively. In the anti-diabetic and anti-Alzheimer activities, 70% ethanol extracts of OFI exhibited moderate inhibition activity, compared to control (acarbose and beberine). Total polyphenol and flavonoid contents, antioxidant, anti-diabetic, and anti-Alzheimer activities were no significant differences by season, respectively. Therefore, information on comparative biological evaluations of OFI may be a beneficial in exploring functional food and drug development.

Comparison of Antioxidant and ${\alpha}$-Glucosidase Inhibition Activities among Water Extracts and Sugar Immersion Extracts of Green Pepper, Purslane and Shiitake (청고추, 쇠비름, 표고버섯의 물 추출물 및 당침액의 항산화 활성 및 ${\alpha}$-Glucosidase Inhibition 활성 비교)

  • Lee, Sung Mee;Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lim, Jun Gu;Kim, Tae Woo;Choe, Myeon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • This study was conducted in order to compare the biological activities of water extracts and sugar immersion extracts of green pepper (Capsicum annuum L.), purslane (Portulaca oleracea L.) and shiitake (Lentinula edodes (Berk.) Pegler) by measuring total polyphenol and flavonoid contents, antioxidant activities and inhibitory effects on ${\alpha}$-amylase and ${\alpha}$-glucosidase. The contents of total polyphenols and flavonoids were higher in water extracts than in sugar immersion extracts. The anti-oxidative activities of water and sugar immersion extracts were measured using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity assay and reducing power assay. All extracts scavenged radicals in a concentration-dependent manner, and water extracts showed stronger radical scavenging activity and reducing power than sugar immersion extract. However, they all exhibited lower activities than ascorbic acid. Compared to the anti-diabetic drug acarbose, which was used as a positive control, the two types of extracts exhibited low ${\alpha}$-glucosidase inhibitory activities, although the activity of sugar immersion extracts were 2-fold higher than that of water extracts. ${\alpha}$-Amylase inhibitory action was not observed for any of the extracts. Finally, by cytotoxicity test, we confirmed that sugar immersion extracts were safer than water extracts. These results indicate that water extracts and sugar immersion extracts of green pepper, purslane and shiitake have different advantages in terms of their antioxidant and anti-diabetic effects, respectively.

Antioxidant Activity and Anti-hyperglycemic Activity of Medicinal Herbal Extracts According to Extraction Methods (약용식물의 추출방법에 따른 항산화 및 항당뇨 활성)

  • Jeong, Hyun-Jin;Lee, Sung-Gyu;Lee, Eun-Ju;Park, Woo-Dong;Kim, Jong-Boo;Kim, Hyun-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.571-577
    • /
    • 2010
  • Korean traditional medicinal herbs have been reported to possess antioxidant and anti-hyperglycemic activities. We tested the antioxidant and anti-hyperglycemic activities of 6 kinds of medicinal herbs: Angelica gigas N., Poria cocos, Mori radicis Cortex, Mori folium, Aralia elata Cortex, and Panax ginseng, prepared as hot water, ethanol, and sonication extracts. The antioxidant activities of the extracts were examined by performing total polyphenol, total flavonoid, and ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) assays. For M. folium, the ethanol extract showed the strongest effects in DPPH radical scavenging activity among the three extraction methods. In addition, sonication extracts of M. radicis Cortex and M. folium showed the highest inhibitory activities for ${\alpha}$-glucosidase among the different extracts. The ethanol extracts of M. folium had the highest inhibition effects against ${\alpha}$-amylase. A direct correlation between antioxidant and anti-hyperglycemic inhibition activity was found in the ethanol and sonication extracts. From the results, it is considered that these six medicinal herbal extracts have antioxidative, anti-hyperglycemic, and correlation effects based on different extraction methods.

Changes of physiochemical properties and biological activity during the fermentation of Doenjnag with bitter melon (Momordica charantia L.) (여주 함유 된장의 발효 중 이화학적 특성 및 생리활성의 변화)

  • Hwang, Chung Eun;Joo, Ok Soo;Lee, Jin Hwan;Song, Yeong Hun;Hwang, In Guk;Cho, Kye Man
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.134-144
    • /
    • 2017
  • This study evaluated the changes of physiochemical properties, phytochemical compounds (isoflavones and phenolic acids), and biological activity during the fermentation of Doenjang without and with bitter melon powder (BMP). The pH decreased from 6.41-5.83 to 5.81-5.24, during the fermentation of Doenjang, while the acidity increased from 0.42-0.65% to 1.28-1.48%. The viable cell numbers of Bacillus and Yeast, salinity, and total amino acid contents increased at the end fermentation (60 day). Also, the fermented Doenjang (FD) with 10% BMP showed the highest ${\gamma}$-aminobutyric acid (GABA, 129.87 mg/100 g) contents, among all the Doenjang samples. The FD exhibited significantly higher inhibitory activities than unfermented Doenjang (UFD) on radicals and ${\alpha}$-glucosidase. The phytochemical compounds including isoflavone-aglycones and phenolic acids increased, whereas isoflavoneglycosides decreased in the BM following fermentative processing. Moreover, the total phenolic, isoflavone-aglycone, and phenolic acid contents were markedly increased, leading to a general increase in antioxidant and ${\alpha}$-glucosidase inhibition activities after fermentation. These results suggest that BMP may be used to prepare a new type of fermented Doenjang with improved antioxidant and antidiabetic activities.

Antioxidant and α-Glucosidase Inhibitory Effect of Tartary Buckwheat Extract Obtained by the Treatment of Different Solvents and Enzymes (용매 종류와 효소 처리에 따른 쓴 메밀 추출물의 항산화 활성 및 α-Glucosidase 저해 활성의 변화)

  • Kim, Ji-Eun;Joo, Sung-Il;Seo, Ji-Hyun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.989-995
    • /
    • 2009
  • Extract yield of tartary buckwheat treated with water, 70% ethanol or methanol were about 13.6%, 7.0% and 6.6%, respectively. Extract yield was greatly increased by the treatment of $\alpha$-amylase indicating 95.1% yield. $RC_{50}$ value of DPPH radical scavenging activity with methanol and 70% ethanol extracts were 34.0 $\mu g$/mL, 40.5 $\mu g$/mL, respectively. The DPPH radical scavenging activity increased when it was treated with $\beta$-glucosidase and cellulase, showing $RC_{50}$ value of 24.7 $\mu g$/mL and 25.0 $\mu g$/mL, respectively. In ABTS radical scavenging activity, methanol extract (100 $\mu g$/mL) showed 30% inhibition. In DPPH or ABTS radical scavenging activities, the treatment of $\beta$-glucanase and $\alpha$-amylase shows the highest and the lowest activities, respectively. In $\alpha$-glucosidase inhibitory effect, 70% ethanol extract showed $RC_{50}$ value of 59.9 $\mu g$/mL, but water extract was not inhibitory effective. The $\alpha$-glucosidase inhibitory effect was the highest in multi enzyme treatment. Content of rutin and quercetin in methanol extract showed higher value with 4400.3 mg% and 71.9 mg%, respectively. The 70% ethanol extract of buckwheat contained rutin of 3459.8 mg% and quercetin of 56.9 mg%. In the treatment of $\beta$-glucanase, the rutin content of ethanol extract increased with 5057.4 mg% and multi-enzyme treatment resulted in the modification of rutin glycoside.

Lotus leaf alleviates hyperglycemia and dyslipidemia in animal model of diabetes mellitus

  • Kim, Ah-Rong;Jeong, Soo-Mi;Kang, Min-Jung;Jang, Yang-Hee;Choi, Ha-Neul;Kim, Jung-In
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.166-171
    • /
    • 2013
  • The purpose of this study was to investigate the effects of lotus leaf on hyperglycemia and dyslipidemia in animal model of diabetes. Inhibitory activity of ethanol extract of lotus leaf against yeast ${\alpha}$-glucosidase was measured in vitro. The effect of lotus leaf on the postprandial increase in blood glucose levels was assessed in streptozotocin-induced diabetic rats. A starch solution (1 g/kg) with and without lotus leaf extract (500 mg/kg) was administered to the rats after an overnight fast, and postprandial plasma glucose levels were monitored. Four-week-old db/db mice were fed a basal diet or a diet containing 1% lotus leaf extract for 7 weeks after 1 week of acclimation to study the chronic effect of lotus leaf. After sacrifice, plasma glucose, insulin, triglycerides (TG), total cholesterol (CHOL), high-density lipoprotein (HDL)-CHOL, and blood glycated hemoglobin levels were measured. Lotus leaf extract inhibited ${\alpha}$-glucosidase activity by 37.9%, which was 1.3 times stronger than inhibition by acarbose at a concentration of 0.5 mg/mL in vitro. Oral administration of lotus leaf extract significantly decreased the area under the glucose response curve by 35.1% compared with that in the control group (P < 0.01). Chronic feeding of lotus leaf extract significantly lowered plasma glucose and blood glycated hemoglobin compared with those in the control group. Lotus leaf extract significantly reduced plasma TG and total CHOL and elevated HDL-CHOL levels compared with those in the control group. Therefore, we conclude that lotus leaf is effective for controlling hyperglycemia and dyslipidemia in an animal model of diabetes mellitus.

α-Glucosidase inhibitory activity and protease characteristics produced by Bacillus amyloliquefaciens (Bacillus amyloliquefaciens로부터 생산된 protease 특성 및 α-glucosidase 저해활성)

  • Lee, Rea-Hyun;Yang, Su-Jin;Hwang, Tae-Young;Chung, Shin-Kyo;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.727-734
    • /
    • 2015
  • In this study, three GRAS (generally recognized as safety) strain was isolated from Doenjang and Cheonggukjang and identified as a protease-producing microorganism, following the appearance of a clear zone around its colony when cultured on a medium containing skim milk. Based on an analysis of the nucleotide sequence of 16S ribosomal RNA, the strains wereas identified as Bacillus amyloliquefaciens and wereas therefore named Bacillus amyloliquefaciens CDD5, Bacillus amyloliquefaciens CPD4, and Bacillus amyloliquefaciens CGD3. Here, we analyzed the protease and ${\alpha}$-glucosidase inhibitory activities of the three B. amyloliquefaciens strains. Among the isolated strains, B. amyloliquefaciens CGD3 exhibited the highest protease activity (9.21 U/mL, 24 hr). The protease activities of B. amyloliquefaciens CDD5 and B. amyloliquefaciens CPD4 reached 1.14 U/mL and 8.02 U/mL, respectively, at 48 hr. The proteases from the three B. amyloliquefaciens strains showed the highest activities within a pH range of 8.0-9.0 at $50^{\circ}C$, and casein was found to be the preferred substrate on evaluating enzyme activity in the substrate specificity assay. The B. amyloliquefaciens strains exhibited maximal growth when the nutrient broth medium had an initial pH within the range of 5.0-10.0, 6-9% sodium chloride (NaCl), and 5% glucose. B. amyloliquefaciens CDD5 exhibited a low ${\alpha}$-glucosidase inhibition rate (5.32%), whereas B. amyloliquefaciens CPD4 and B. amyloliquefaciens CGD3 exhibited relatively higher inhibition rates of 96.89% and 97.55%, respectively.

Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells (청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구)

  • Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lee, Sung Mee;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • Purpose: Previous studies have shown that treatment with Smilax china L. leaf extract (SCLE) produces antidiabetic effects due to ${\alpha}$-glucosidase inhibition. In this study, we examined the mechanism underlying these antidiabetic effects by examining glucose uptake in HepG2 cells cultured with SCLE. Methods: Glucose uptake and glucokinase activity were examined using an assay kit. Expression of glucose transporter (GLUT)-2, GLUT-4, and HNF-$1{\alpha}$ was measured by RT-PCR or western blot. Results: Treatment with SCLE resulted in enhanced glucose uptake in HepG2 cells, and this effect was especially pronounced when cells were cultured in an insulin-free medium. SCLE induced an increase in expression of GLUT-2 but not GLUT-4. The increase in the levels of HNF-$1{\alpha}$, a GLUT-2 transcription factor, in total protein extract and nuclear fraction suggest that the effects of SCLE may occur at the level of GLUT-2 transcription. In addition, by measuring the change in glucokinase activity following SCLE treatment, we confirmed that SCLE stimulates glucose utilization by direct activation of this enzyme. Conclusion: These results demonstrate that the potential antidiabetic activity of SCLE is due at least in part to stimulation of glucose uptake and an increase in glucokinase activity, and that SCLE-stimulated glucose uptake is mediated through enhancement of GLUT-2 expression by inducing expression of its transcription factor, HNF-$1{\alpha}$.

Enzyme Inhibition Activities of Ethanol Extracts from Germinating Rough Rice (Oryza sativar L.) (발아기간에 따른 벼(Oryza sativa L.)의 부위별 효소저해활성)

  • Kim, Min Young;Lee, Sang Hoon;Jang, Gwi Young;Park, Hye Jin;Meishan, Li;Kim, Shinje;Lee, Youn Ri;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.6
    • /
    • pp.917-923
    • /
    • 2013
  • This study investigated the enzyme inhibitory effects of ethanol extracts from the different parts of rough rice (Oryza sativar L.) from its germination period. Rough rice was germinated at $37^{\circ}C$ for 6 days, then separated into hull+sprout and brown rice. ${\alpha}$-Glucosidase inhibitory activity had the highest value (39.38%) in hull+sprout extracts after 5 days of germination. ${\alpha}$-Amylase and DPP-4 inhibitory activity had the highest values (75.32% and 47.77%, respectively) in hull+sprout extracts after germination for 5 days. ACE inhibitory activity of hull+ sprout extracts increased from 43.16% at the beginning to 58.60% at 5 days, while brown rice extracts increased this activity from 0.88% at the beginning to 14.50% at 4 days. The xanthine oxidase inhibitory activity of hull+ sprout extracts increased from 62.02% at the beginning to 64.49% at one day, and then decreased. Lipase inhibitory activity had its highest value (55.17%) in hull+sprout extracts after germination for 5 days. These results indicate that the optimal germination period for increasing enzyme inhibitory activities may be 5 days, and that hull+sprout extracts have a higher enzyme inhibition activity than brown rice.

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh;Ha, Manh Tuan;Hoang, Le Minh;Vu, Ngoc Khanh;Kim, Jeong Ah;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.