DOI QR코드

DOI QR Code

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Ha, Manh Tuan (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Hoang, Le Minh (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Vu, Ngoc Khanh (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Kim, Jeong Ah (College of Pharmacy, Research Institute of Pharmaceutical Science, Kyungpook National University) ;
  • Min, Byung Sun (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
  • Received : 2022.06.11
  • Accepted : 2022.09.06
  • Published : 2022.09.30

Abstract

In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (2021R1A2C2011940), Korea. We are thankful to the Korea Basic Science Institute (KBSI) for mass spectrometric measurements.

References

  1. Lago, R. M.; Singh, P. P.; Nesto, R. W. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 667. https://doi.org/10.1038/ncpendmet0638
  2. Van de Laar, F. A.; Lucassen, P. L. B. J.; Akkermans, R. P.; Van de Lisdonk, E. H.; Rutten, G. E. H. M.; Van Weel, C. Cochrane Database Syst. Rev. 2005. CD003639.
  3. Poovitha, S.; Parani, M. BMC Complement Altern. Med. 2016, 16, 185.
  4. Tu, W. C.; Ding, L. F.; Peng, L. Y.; Song, L. D.; Wu, X. D.; Zhao, Q. S. Phytochemistry 2022, 193, 112973. https://doi.org/10.1016/j.phytochem.2021.112973
  5. Shah, G. M.; Jamal, Z.; Hussain, M. Pak. J. Bot. 2013, 45, 253-261.
  6. Chaudhary, C. M.; Jan, H. A.; Kunwar, R. M.; Bussmann, R. W.; Paniagua-Zambrana, N. Y. In Ethnobotany of the Himalayas: Caesalpinia decapetala (Roith) Alston Fabaceae; Bussmann, R. W.; Paniagua-Zambrana, N. Y. Ed; Springer International Publishing; 2020, pp 1-8.
  7. Miyazawa, M.; Nagata, T.; Nakahashi, H.; Takahashi, T. J. Essent. Oil Res. 2012, 24, 441-446. https://doi.org/10.1080/10412905.2012.703475
  8. Parveen, A.; Akash, M. S. H.; Rehman, K.; Mahmood, Q.; Qadir, M. I. BioImpacts. BI 2014, 4, 43-48.
  9. Wei, X. H.; Yang, S. J.; Liang, N.; Hu, D. Y.; Jin, L. H.; Xue, W.; Yang, S. Molecules 2013, 18, 1325-1336. https://doi.org/10.3390/molecules18011325
  10. Kamikawa, S.; Oshimo, S.; Ohta, E.; Nehira, T.; Omura, H.; Ohta, S. Phytochemistry 2016, 121, 50-57. https://doi.org/10.1016/j.phytochem.2015.10.001
  11. Zhang, L.; Chen, J.; Ke, C.; Zhang, H.; Zhang, S.; Tang, W.; Liu, C.; Liu, G.; Chen, S.; Hu, A.; Sun, W.; Xiao, Y.; Liu, M.; Chen, X. Viruses 2020, 12, 557.
  12. Ogawa, K.; Aoki, I.; Sashida, Y. Phytochemistry 1992, 31, 2897-2898. https://doi.org/10.1016/0031-9422(92)83658-L
  13. Van Kiem, P.; Van Minh, C.; Huong, H. T.; Lee, J. J.; Kim, Y. H. Chem. Pharm. Bull(Tokyo). 2005, 53, 428-430. https://doi.org/10.1248/cpb.53.428
  14. Wei, X. H.; Yang, S. J.; Liang, N.; Hu, D. Y.; Jin, L. H.; Xue, W.; Yang, S. Molecules 2013, 18, 1325-1336. https://doi.org/10.3390/molecules18011325
  15. Hussain, L.; Qadir, M. I.; Rehman, S. Bangladesh J. Pharmacol. 2014, 9, 529-532.
  16. Shelar, U. B. Phytochemical And Pharmacological Study of Caesalpinia Decapetala Leaves; M. K. Infoedutech Private Limited: India, 2022. pp 1-171.
  17. Charisiadis, P.; Kontogianni, V. G.; Tsiafoulis, C. G.; Tzakos, A. G.; Siskos, M.; Gerothanassis, I. P. Molecules 2014, 19, 13643-13682. https://doi.org/10.3390/molecules190913643
  18. Hernandez-Garcia, E.; Garcia, A .; A valos-A lanis, F. G.; RivasGalindo, V. M.; Delgadillo-Puga, C.; Rayo Camacho-Corona, M. D. Data Brief 2018, 22, 255-268.
  19. Cuong, T. D.; Hung, T. M.; Kim, J. C.; Kim, E. H.; Woo, M. H.; Choi, J. S.; Lee, J. H.; Min, B. S. J. Nat. Prod. 2012, 75, 2069-2075. https://doi.org/10.1021/np3003673
  20. Cretin, B. N.; Sallembien, Q.; Sindt, L.; Daugey, N.; Buffeteau, T.; Waffo-Teguo, P.; Dubourdieu, D.; Marchal, A. Anal. Chim. Acta 2015, 888, 191-198.
  21. Fu, J.; Liang, G. Y.; Zhang, J. X.; Zhang, Y. P.; Liu, L.; Pan, W. D.; Cao, P. X. Xiandai Yaowu Yu Linchuang 2013, 28, 265-268.
  22. Jung, E. G.; Han, K. I.; Kwon, H. J.; Patnaik, B. B.; Kim, W. J.; Hur, G. M.; Nam, K. W.; Han, M. D. Arch. Pharm. Res. 2015, 38, 973-983.
  23. Chang, T. S.; Chao, S. Y.; Ding, H. Y. Int. J. Mol. Sci. 2012, 13, 10359-10367. https://doi.org/10.3390/ijms130810359
  24. Khlupova, M.; Vasil'eva, I.; Shumakovich, G.; Morozova, O.; Chertkov, V.; Shestakova, A.; Kisin, A.; Yaropolov, A. J. Mol. Catal. B Enzym. 2016, 123, 62-66. https://doi.org/10.1016/j.molcatb.2015.11.010
  25. Kim, J. S.; Kwon, Y. S.; Chun, W. J.; Kim, T. Y.; Sun, J.; Yu, C. Y.; Kim, M. J., Food Chem. 2010, 120, 539-543.
  26. Kim, M. Y.; Chung, I. M.; Choi, D. C.; Park, H. J., Nat. Prod. Sci. 2009, 15, 208-212.
  27. Abd El-Razek, M. H. Asian J. Chem. 2007, 19, 4867.
  28. Namikoshi, M.; Nakata, H.; Yamada, H.; Nagai, M.; Saitoh, T. Chem. Pharm. Bull. 1987, 35, 2761-2773.
  29. Verotta, L.; Dell'Agli, M.; Giolito, A.; Guerrini, M.; Cabalion, P.; Bosisio, E. J. Nat. Prod. 2001, 64, 603-607. https://doi.org/10.1021/np000306j
  30. Bohr, G.; Gerhauser, C.; Knauft, J.; Zapp, J.; Becker, H. J. Nat. Prod. 2005, 68, 1545-1548. https://doi.org/10.1021/np050164z
  31. Fawzi, F.; Mahdi, M. F.; Abaas, I. S. J. Pharm. Sci. 2019, 11, 185-190
  32. Zhao, M. B.; Cai, C. Q.; Tu, P. F.; Tang, L. Magn. Reson. Chem. 2016, 54, 601-605. https://doi.org/10.1002/mrc.4408
  33. Ha, M. T.; Lee, T. H.; Kim, C. S.; Prajapati, R.; Kim, J. A.; Choi, J. S.; Min, B. S. Phytochemistry 2022, 197, 113100. https://doi.org/10.1016/j.phytochem.2022.113100
  34. Lee, S.; Choi, S. Y.; Choo, Y. Y.; Kim, O.; Tran, P. T.; Dao, C. T.; Min, B. S.; Lee, J. H. Int. Immunopharmacol. 2015, 28, 328-336. https://doi.org/10.1016/j.intimp.2015.06.015
  35. Proenca, C.; Freitas, M.; Ribeiro, D.; Oliveira, E. F. T.; Sousa, J. L. C.; Tome, S. M.; Ramos, M. J.; Silva, A. M. S.; Fernandes, P. A.; Fernandes, E. J. Enzyme Inhib. Med. Chem. 2017, 32, 1216-1228.
  36. Arsiningtyas, I.; Kato, E.; Kawabata, J. Planta Med. 2015, 81, 42. https://doi.org/10.1055/s-0035-1565419