Let A(p) be the class of functions $f\;:\;z^p\;+\;\sum\limits_{j=1}^{\infty}a_jz^{p+j}$ analytic in the open unit disc E. Let, for any integer n > -p, $f_{n+p-1}(z)\;=\;z^p+\sum\limits_{j=1}^{\infty}(p+j)^{n+p-1}z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution * as $f_{n+p-1}\;*\;f_{n+p-1}^{-1}=\frac{z^p}{(1-z)^{n+p}$. A function p, analytic in E with p(0) = 1, is in the class $P_k(\rho)$ if ${\int}_0^{2\pi}\|\frac{Re\;p(z)-\rho}{p-\rho}\|\;d\theta\;\leq\;k{\pi}$, where $z=re^{i\theta}$, $k\;\geq\;2$ and $0\;{\leq}\;\rho\;{\leq}\;p$. We use the class $P_k(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f)\;\;=\;f_{n+p-1}^{-1}\;*\;f$ for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.
In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.
Kim, Geunhee;Kim, Jae Min;Shin, Ji Hyeon;Lee, Seung Jun
Nuclear Engineering and Technology
/
제54권10호
/
pp.3620-3630
/
2022
The diagnosis of abnormalities in a nuclear power plant is essential to maintain power plant safety. When an abnormal event occurs, the operator diagnoses the event and selects the appropriate abnormal operating procedures and sub-procedures to implement the necessary measures. To support this, abnormality diagnosis systems using data-driven methods such as artificial neural networks and convolutional neural networks have been developed. However, data-driven models cannot always guarantee an accurate diagnosis because they cannot simulate all possible abnormal events. Therefore, abnormality diagnosis systems should be able to detect their own potential misdiagnosis. This paper proposes a rulebased diagnostic validation algorithm using a previously developed two-stage diagnosis model in abnormal situations. We analyzed the diagnostic results of the sub-procedure stage when the first diagnostic results were inaccurate and derived a rule to filter the inconsistent sub-procedure diagnostic results, which may be inaccurate diagnoses. In a case study, two abnormality diagnosis models were built using gated recurrent units and long short-term memory cells, and consistency checks on the diagnostic results from both models were performed to detect any inconsistencies. Based on this, a re-diagnosis was performed to select the label of the second-best value in the first diagnosis, after which the diagnosis accuracy increased. That is, the model proposed in this study made it possible to detect diagnostic failures by the developed consistency check of the sub-procedure diagnostic results. The consistency check process has the advantage that the operator can review the results and increase the diagnosis success rate by performing additional re-diagnoses. The developed model is expected to have increased applicability as an operator support system in terms of selecting the appropriate AOPs and sub-procedures with re-diagnosis, thereby further increasing abnormal event diagnostic accuracy.
In this paper we give a non-existence theorem for Hopf hypersurfaces in the complex two-plane Grassmannian $G_2({\mathbb{C}}^{m+2})$ with re-current normal Jacobi operator ${\bar{R}}_N$.
In this paper, we present some upper bounds for unitarily invariant norms inequalities. Among other inequalities, we show some upper bounds for the Hilbert-Schmidt norm. In particular, we prove $${\parallel}f(A)Xg(B){\pm}g(B)Xf(A){\parallel}_2{\leq}{\Large{\parallel}}{\frac{(I+{\mid}A{\mid})X(I+{\mid}B{\mid})+(I+{\mid}B{\mid})X(I+{\mid}A{\mid})}{^dA^dB}}{\Large{\parallel}}_2$$, where A, B, $X{\in}{\mathbb{M}}_n$ such that A, B are Hermitian with ${\sigma}(A){\cup}{\sigma}(B){\subset}{\mathbb{D}}$ and f, g are analytic on the complex unit disk ${\mathbb{D}}$, g(0) = f(0) = 1, Re(f) > 0 and Re(g) > 0.
We show how some interesting results involving series summation and the digamma function are established by means of Riemann-Liouville operator of fractional calculus. We derive the relation $$ \frac{\Gamma(\lambda)}{\Gamma(\nu)} \sum^{\infty}_{n=1}{\frac{\Gamma(\nu+n)}{n\Gamma(\lambda+n)}_{p+2}F_{p+1}(a_1, \cdots, a_{p+1},\lambda + n; x/a)} = \sum^{\infty}_{k=0}{\frac{(a_1)_k \cdots (a_{(p+1)}{(b_1)_k \cdots (b_p)_k K!} (\frac{x}{a})^k [\psi(\lambda + k) - \psi(\lambda - \nu + k)]}, Re(\lambda) > Re(\nu) \geq 0 $$ and explain some special cases.
In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported [Chem. Phys. 1977, 20, 93]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfunctions to cast collision bracket integrals into more convenient and suitable forms for numerical simulations. One of the alternative forms is given in the form of time correlation function. This form, on a further manipulation, assumes a form reminiscent of the Chapman- Enskog collision bracket integrals, but for dense gases and liquids as well as solids. In the dilute gas limit it would give rise precisely to the Chapman-Enskog collision bracket integrals for two-particle collision. The alternative forms obtained are more readily amenable to numerical simulation methods than the collision bracket integrals expressed in terms of a classical collision operator, which requires solution of classical Lippmann-Schwinger integral equations. This way, the aforementioned kinetic theory of dense fluids is made fully accessible by numerical computation/simulation methods, and the transport coefficients thereof are made computationally as accessible as those in the linear response theory.
본 논푼에서는 경수로 원자력 발전소의 사용 후 핵연료를 중수로의 핵연료로 재사용하기 위해 사용 후 경수로 핵연료의 최적 조합을 찾는데 진화 알고리즘(Evolutionary Algorithm)을 이용하여 해결해 보고자 한다. 진화 알고리즘은 대규모 문제 공간에서 최적화 문제를 해결하는데 적합한 알고리즘이다. 사용 후 경수로 핵연료에는 중수로에서 사용할 수 있는 유용한 원자들을 많이 포함하고 있지만 핵연료 봉마다 그 함량이 다양하고, 중수로 연료가 되기 위한 제약 조건 때문에 최적 조합 전략이 펼요하다. 사용후 핵연료의 조합 문제는 알고리즘 분야에서 대표적인 조합 최적화 문제인 0/1 Knapsack문제와 같이 Non-Polynomial (NP) Complete문제에 해당한다. 이러한 문제를 해결하기 위해셔는 고전적언 전화 알고리즘의 전략에 기반하여 랜덤 연산자를 이용하되 평가 함수 값이 좋은 방향으로만 탐색을 수행하는 방법이 있으나 이것은 탐색의 효율면에셔 좋지 않다. 따라서 본 연구에서는 벡터 연산자를 이용하여 최적의 해를 보다 빨리 얻을 수 있는 휴리스틱을 사용하는 방법을 제안한다. 본 논문에서는 경수로 핵연료 조합 문제 영역의 모든 지식을 벡터화하여 벡터의 연산만으로 가능성 검사, 해를 평가 하는 방법을 소개한다. 또한 벡터 휴리스틱이 고전적인 진화 알고리즘에 비해 어느 정도의 성능을 보이는지 비교한다.
International journal of advanced smart convergence
/
제4권2호
/
pp.103-108
/
2015
The electric utility has the responsibility of reducing the impact of peaks on electricity demand and related costs. Therefore, they have introduced Direct Load Control System (DLCS) to automate the external control of shedding customer load that it controls. Since the number of customer load participating in the DLC program are keep increasing, DLCS operators a re facing difficulty in monitoring and controlling customer load. The existing DLCS needs constant operator intervention, e.g., whenever the load is about to exceed a predefined amount, it needs operator's intervention to control the on/off status of the load. Therefore, DLCS operators need the state-of-the-art DLCS, which can control automatically the on/off status of the customer load without intervention as much as possible. This paper presents an intelligent DLCS using the active database. The proposed DLCS is applying the active database to DLCS which can avoid operator's intervention as much as possible. To demonstrate the validity of the proposed system, variable production rules and intelligent demand controller are presented.
The aim of this note is to study some properties of Schrodinger operators, the magnetic case, $H_{0}$ (a)=1/2(-i.del.-a)$^{2}$; H(a)= $H_{0}$ (a)+V, where a=( $a_{1}$,.., $a_{n}$ ).mem. $L^{2}$$_{loc}$ and V is a potential energy. Also, we are interested in solutions, .psi., of H(a).psi.=E.psi. in the sense that (.psi., $e^{-tH}$(a).PSI.)= $e^{-tE}$(.psi.,.PSI.) for all .PSI..mem. $C_{0}$$^{\infty}$( $R^{n}$ ) (see B. Simon [1]). In section 2, under some conditions, we find that a semibounded quadratic form of H9a) exists and that the Schrodinger operator H(a) with Re V.geq.0 is accretive on a form domain Q( $H_{0}$ (a)). But, it is well-known that the Schrodinger operator H=1/2.DELTA.+V with Re V.geq.0 is accretive on $C_{0}$$^{\infty}$( $R^{n}$ ) in N Okazawa [4]. In section 3, we want to discuss $L^{p}$ estimates of Schrodinger semigroups.ups.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.