DOI QR코드

DOI QR Code

Eigenfunctions for Liouville Operators, Classical Collision Operators, and Collision Bracket Integrals in Kinetic Theory Made Amenable to Computer Simulations

  • Received : 2011.11.02
  • Accepted : 2011.11.22
  • Published : 2012.03.20

Abstract

In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported [Chem. Phys. 1977, 20, 93]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfunctions to cast collision bracket integrals into more convenient and suitable forms for numerical simulations. One of the alternative forms is given in the form of time correlation function. This form, on a further manipulation, assumes a form reminiscent of the Chapman- Enskog collision bracket integrals, but for dense gases and liquids as well as solids. In the dilute gas limit it would give rise precisely to the Chapman-Enskog collision bracket integrals for two-particle collision. The alternative forms obtained are more readily amenable to numerical simulation methods than the collision bracket integrals expressed in terms of a classical collision operator, which requires solution of classical Lippmann-Schwinger integral equations. This way, the aforementioned kinetic theory of dense fluids is made fully accessible by numerical computation/simulation methods, and the transport coefficients thereof are made computationally as accessible as those in the linear response theory.

Keywords

References

  1. Prigogine, I. Nonequilibrium Statistical Mechanics; Interscience: New York, 1962.
  2. Zwanzig, R. Phys. Rev. 1963, 129, 486. https://doi.org/10.1103/PhysRev.129.486
  3. Eu, B. C. Kinetic Theory and Irreversible Thermodynamics; Wiley: New York, 1992.
  4. Newton, R. G. Scattering Theory of Particles and Waves; McGraw-Hill: New York, 1966.
  5. Faddeev, L. D. Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory; Daniel Davey & Co.: New York, 1965.
  6. Prugovecki, E. Quantum Mechanics in Hilbert Space; Academic: New York, 1971.
  7. Miles, J. R. N.; Dahler, J. S. J. Chem. Phys. 1970, 52, 616. https://doi.org/10.1063/1.1673031
  8. Eu, B. C. J. Chem. Phys. 1971, 54, 559. https://doi.org/10.1063/1.1674878
  9. Eu, B. C. Chem. Phys. 1977, 20, 93. https://doi.org/10.1016/0301-0104(77)85117-3
  10. Snider, R. F. J. Chem. Phys. 1960, 32, 1051. https://doi.org/10.1063/1.1730847
  11. Snider, R. F.; Sanctuary, B. C. J. Chem. Phys. 1971, 55, 1555. https://doi.org/10.1063/1.1676279
  12. Cohen, E. G. D. Kinetic Theory of Dense Gases in: Fundamental Problems in Statistical Mechanics; North-Holland: Amsterdam, 1968.
  13. Dorfman, J. R. The Binary Collision Expansion in Kinetic Theory in Lectures in Theoretical Physics; Brittin, W. E., Ed.; Gordon & Breach: New York, 1967.
  14. Kawasaki, K.; Oppenheim, I. Phys. Rev. A 1964, 136, 1519; https://doi.org/10.1103/PhysRev.136.A1519
  15. Kawasaki, K.; Oppenheim, I. Phys. Rev. A 1965, 139, 649. https://doi.org/10.1103/PhysRev.139.A649
  16. Goldstein, H. Classical Mechanics, Addison-Wesley: Reading, MA, 1959.
  17. Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, 1965.
  18. Eu, B. C. Nonequilibrium Statistical Mechanics; Kluwer: Dordtrecht, 1998.
  19. Eu, B. C. Transport Coefficients of Fluids; Springer: Heidelberg, 2006.
  20. Wiener, N. The Fourier Integral and Certain of Its Applications; Dover: New York, 1932.
  21. van der Pol, B.; Bremmer, H. Operational Calculus; Cambridge U. P.: London, 1959, Chapter 7.
  22. Eu, B. C. J. Chem. Phys. 1971, 55, 4613. https://doi.org/10.1063/1.1676798
  23. Green, M. S. J. Chem. Phys. 1952, 20, 1201
  24. Green, M. S. J. Chem. Phys. 1954, 22, 398. https://doi.org/10.1063/1.1740082
  25. Kubo, R. J. Phys. Soc. Japan 1957, 12, 570. https://doi.org/10.1143/JPSJ.12.570
  26. Mori, H. Phys. Rev. 1958, 112, 1829 https://doi.org/10.1103/PhysRev.112.1829
  27. Mori, H. Phys. Rev. 1959, 115, 298. https://doi.org/10.1103/PhysRev.115.298
  28. Chapman, S.; Cowling, T. G. The Mathematical Theory of Nonuniform Gases, 3rd ed.; Cambridge U. P.: London, 1970.
  29. Ferziger, J. H.; Kaper, H. G. Mathematical Theory of Transport Processes in Gases; North-Holland: Amsterdam, 1972.
  30. For mass-normalized coordinates used here, see Sec. 13.6 of Ref. 3, Smith, F. T. Phys. Rev. 1960, 120, 1058, https://doi.org/10.1103/PhysRev.120.1058
  31. Delves, L. M. Nucl. Phys. 1958-1959, 9, 391.
  32. Erdelyi, A., ed., Higher Transcendental Functions, H. Bateman Manuscripts; McGraw-Hill: New York, 1953; Vol. 2.
  33. Eu, B. C. Physica 1977, 88, 158. https://doi.org/10.1016/0378-4371(77)90162-5