Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.779

Eigenfunctions for Liouville Operators, Classical Collision Operators, and Collision Bracket Integrals in Kinetic Theory Made Amenable to Computer Simulations  

Eu, Byung-Chan (Department of Chemistry, McGill University)
Publication Information
Abstract
In the kinetic theory of dense fluids the many-particle collision bracket integral is given in terms of a classical collision operator defined in the phase space. To find an algorithm to compute the collision bracket integrals, we revisit the eigenvalue problem of the Liouville operator and re-examine the method previously reported [Chem. Phys. 1977, 20, 93]. Then we apply the notion and concept of the eigenfunctions of the Liouville operator and knowledge acquired in the study of the eigenfunctions to cast collision bracket integrals into more convenient and suitable forms for numerical simulations. One of the alternative forms is given in the form of time correlation function. This form, on a further manipulation, assumes a form reminiscent of the Chapman- Enskog collision bracket integrals, but for dense gases and liquids as well as solids. In the dilute gas limit it would give rise precisely to the Chapman-Enskog collision bracket integrals for two-particle collision. The alternative forms obtained are more readily amenable to numerical simulation methods than the collision bracket integrals expressed in terms of a classical collision operator, which requires solution of classical Lippmann-Schwinger integral equations. This way, the aforementioned kinetic theory of dense fluids is made fully accessible by numerical computation/simulation methods, and the transport coefficients thereof are made computationally as accessible as those in the linear response theory.
Keywords
Liouville operator; Eigenfuntions; Classical scattering; Collision bracket integrals; Transport coefficients Introduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, 1965.
2 Eu, B. C. Nonequilibrium Statistical Mechanics; Kluwer: Dordtrecht, 1998.
3 Eu, B. C. Transport Coefficients of Fluids; Springer: Heidelberg, 2006.
4 Wiener, N. The Fourier Integral and Certain of Its Applications; Dover: New York, 1932.
5 van der Pol, B.; Bremmer, H. Operational Calculus; Cambridge U. P.: London, 1959, Chapter 7.
6 Eu, B. C. J. Chem. Phys. 1971, 55, 4613.   DOI
7 Green, M. S. J. Chem. Phys. 1952, 20, 1201
8 Green, M. S. J. Chem. Phys. 1954, 22, 398.   DOI
9 Kubo, R. J. Phys. Soc. Japan 1957, 12, 570.   DOI
10 Mori, H. Phys. Rev. 1958, 112, 1829   DOI
11 Mori, H. Phys. Rev. 1959, 115, 298.   DOI
12 Chapman, S.; Cowling, T. G. The Mathematical Theory of Nonuniform Gases, 3rd ed.; Cambridge U. P.: London, 1970.
13 Ferziger, J. H.; Kaper, H. G. Mathematical Theory of Transport Processes in Gases; North-Holland: Amsterdam, 1972.
14 For mass-normalized coordinates used here, see Sec. 13.6 of Ref. 3, Smith, F. T. Phys. Rev. 1960, 120, 1058,   DOI
15 Delves, L. M. Nucl. Phys. 1958-1959, 9, 391.
16 Erdelyi, A., ed., Higher Transcendental Functions, H. Bateman Manuscripts; McGraw-Hill: New York, 1953; Vol. 2.
17 Eu, B. C. Physica 1977, 88, 158.   DOI
18 Prigogine, I. Nonequilibrium Statistical Mechanics; Interscience: New York, 1962.
19 Zwanzig, R. Phys. Rev. 1963, 129, 486.   DOI
20 Eu, B. C. Kinetic Theory and Irreversible Thermodynamics; Wiley: New York, 1992.
21 Newton, R. G. Scattering Theory of Particles and Waves; McGraw-Hill: New York, 1966.
22 Faddeev, L. D. Mathematical Aspects of the Three-Body Problem in the Quantum Scattering Theory; Daniel Davey & Co.: New York, 1965.
23 Prugovecki, E. Quantum Mechanics in Hilbert Space; Academic: New York, 1971.
24 Miles, J. R. N.; Dahler, J. S. J. Chem. Phys. 1970, 52, 616.   DOI
25 Eu, B. C. J. Chem. Phys. 1971, 54, 559.   DOI
26 Eu, B. C. Chem. Phys. 1977, 20, 93.   DOI
27 Snider, R. F. J. Chem. Phys. 1960, 32, 1051.   DOI
28 Snider, R. F.; Sanctuary, B. C. J. Chem. Phys. 1971, 55, 1555.   DOI
29 Cohen, E. G. D. Kinetic Theory of Dense Gases in: Fundamental Problems in Statistical Mechanics; North-Holland: Amsterdam, 1968.
30 Dorfman, J. R. The Binary Collision Expansion in Kinetic Theory in Lectures in Theoretical Physics; Brittin, W. E., Ed.; Gordon & Breach: New York, 1967.
31 Kawasaki, K.; Oppenheim, I. Phys. Rev. A 1965, 139, 649.   DOI
32 Kawasaki, K.; Oppenheim, I. Phys. Rev. A 1964, 136, 1519;   DOI
33 Goldstein, H. Classical Mechanics, Addison-Wesley: Reading, MA, 1959.