• Title/Summary/Keyword: $\beta$-TCP

Search Result 114, Processing Time 0.031 seconds

EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model (두개결손부 모델에서 배양된 골막유래세포를 이용한 골이식 시 지지체로서 TCP의 효과)

  • Shim, Kyung-Mi;Kim, Se-Eun;Kim, Jong-Choon;Bae, Chun-Sik;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • The periosteum contains multipotent cells that can differentiate into osteoblasts and chondrocytes. Cultured periosteum-derived cells (PDCs) have an osteogenic capacity. The purpose of this study was to evaluate the interaction of PDCs with bone graft biomaterial. After cell isolation from the calvarial periosteum of Sprague-Dawley rats, cultured PDCs were placed in critical-sized calvarial defects with beta-tricalcium phosphate (${\beta}$-TCP). All rats were sacrificed 8 weeks after bone graft surgery, and the bone regenerative ability of bone grafting sides was evaluated by plain radiography, micro-computed tomography (CT), and histological examination. PDCs grafted with ${\beta}$-TCP displayed enhanced calcification in the defect site, density of regenerated bone and new bone formation within the defect and its boundaries. Furthermore, these PDCs more efficiently regenerated new bone as compared to grafted ${\beta}$-TCP only. The results suggest that cultured PDCs have the potential to promote osteogenesis in bone defects.

Morphometric analysis on bone formation effect of $\beta-TCP$ and rhBMP-2 in rabbit mandible (토끼의 하악골에서 $\beta-TCP$ 와 rhBMP-2의 골형성 효과에 대한 형태계측학적 연구)

  • Kim, Kyu-Nam;Yang, Jung-Eun;Jang, Jea-Won;Sasikala, Balaraman;Wang, Beng;Kim, Il-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.3
    • /
    • pp.161-171
    • /
    • 2010
  • Introduction: This study was to assess the effectiveness of new bone formation and regeneration by using a rhBMP-2 and $\beta-TCP$ as a carrier in rabbits’mandible. Materials and Methods: The mandibles of 36 rabbits were exposed and cortical bone was penetrated for this study. The experimental subjects were divided into 3 groups each 12 rabbits ; control group, experimental group 1, and experimental group 2. Control group had the defect itself without any treatment, in the experimental group 1, $\beta-TCP$P only was grafted, and in the experimental group 2, rhBMP-2 soaked in $\beta-TCP$ was grafted. The rabbits were sacrificed after 1, 2, 3, 4, 6, and 8weeks, and new bone formation area was examined and measured for bone quantitative and qualitative analysis with light, fluorescent and polarized microscopy. Results: In the experimental group 1, new bone formation from the adjacent host bone was made by osteoconduction, and in the experimental group 2, direct new bone formation by osteoinduction of rhBMP-2 as well as new bone formation by osteoconduction of $\beta-TCP$ were observed. Conclusion: rhBMP-2 of experimental group 2 is very effective in the bone formation in early 2weeks and bone remodelling from 3weeks.

Mechanical Properties of Hydroxyapatite β-TCP Composite with Changing SiO2 Contents (SiO2 첨가량에 따른 Hydroxyapatite β-TCP 복합체의 기계적 특성)

  • Ryu, Su-Chak;Min, Sang-Ho;Park, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.480-483
    • /
    • 2007
  • Hydroxyapatites were prepared by the different $SiO_2$ addition at $1450^{\circ}C$ for 2h. With the increase of $SiO_2$ addition, microstructure, bulk density, porosity, mechanical strength of $hydroxyapatite/{\beta}-TCP$ composite were investigated. When the sintered HAp contained 1 wt% $SiO_2$, the each properties of the HAp were increased. But the excess addition of $SiO_2$ content above 1wt% the each property were decreased. This results were due to the ${\beta}-TCP$ phase. The ${\beta}-TCP$ phase appeared at 3 wt% $SiO_2$ addition and the ${\beta}-TCP$ phase was enhanced by the $SiO_2$ increasing.

Fabrication and Characterization of the Ti-TCP Composite Biomaterials by Spark Plasma Sintering

  • Mondal, Dibakar;Park, Hyun-Kuk;Oh, Ik-Hyun;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Ti metal has superior mechanical properties along with biocompatibility, but it still has the problem of bio-inertness thus forming weaker bond in bone/implant interface and long term clinical performance as orthopaedic and dental devices are restricted for stress shielding effect. On the other hand, despite the excellent biodegradable behavior as being an integral constituent of the natural bone, the mechanical properties of ${\beta}$-tricalcium phosphate $(Ca_3(PO_4)_2;\;{\beta}-TCP)$ ceramics are not reliable enough for post operative load bearing application in human hard tissue defect site. One reasonable approach would be to mediate the features of the two by making a composite. In this study, ${\beta}$-TCP/Ti ceramic-metal composites were fabricated by spark plasma sintering in inert atmosphere to inhibit the formation of $TiO_2$. Composites of 30 vol%, 50 vol% and 70 vol% ${\beta}$-TCP with Ti were fabricated. Detailed microstructural and phase characteristics were investigated by FE-SEM, EDS and XRD. Material properties like relative density, hardness, compressive strength, elastic modulus etc. were characterized. Cell viability and biocompatibility were investigated using the MTT assay and by examining cell proliferation behavior.

  • PDF

Microstructure Evolution of Solid State Reacted HAp/β-TCP Composite Powders by Post-Treatment Processing (후처리공정에 따른 고상반응 β-TCP/HAp 복합분체의 미세구조 변화)

  • 박영민;양태영;박상희;윤석영;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.582-587
    • /
    • 2004
  • Biphasic Calcium Phosphate (BCP) consisted of hydroxyapatite (HAp) and $\beta$-tricalcium phosphate (P-TCP) has been prepared by solid state reaction. The size reduction of the resultant BCP agglomerate was carried out by reaction with hot water under atmospheric condition uld also under high pressure using an autoclave. The influence of processing conditions on the change of crystalline phase and composition, relative amount of constituent, specific surface area, and microstructure was investigated by means of XRD, FT-IR, BET method using a nitrogen adsorption and SEM.

Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect

  • Park, Jung-Chul;Lim, Hyun-Chang;Sohn, Joo-Yeon;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.223-230
    • /
    • 2009
  • Purpose: Synthetic bone products such as biphasic calcium phosphate (BCP) are mixtures of hydroxyapatite (HA) and ${\beta}$-tricalcium phosphate (${\beta}$- TCP). In periodontal therapies and implant treatments, BCP provides to be a good bone reconstructive material since it has a similar chemical composition to biological bone apatites. The purpose of this study was to compare bone regeneration capacity of two commercially available BCP. Methods: Calvarial defects were prepared in sixteen 9-20 months old New Zealand White male rabbits. BCP with HA and ${\beta}$- TCP (70:30) and BCP with Silicon-substituted hydroxyapatite (Si-HA) and ${\beta}$-TCP (60:40) particles were filled in each defect. Control defects were filled with only blood clots. Animals were sacrificed at 4 and 8 week postoperatively. Histomorphometric analysis was performed. Results: BCP with HAand ${\beta}$- TCP 8 weeks group and BCP with Si-HA and ${\beta}$- TCP 4 and 8 weeks groups showed statistically significant in crease (P <0.05) in augmented area than control group. Newly formed bone area after 4 and 8 weeks was similar among all the groups. Residual materials were slightly more evident in BCP with HA and ${\beta}$- TCP 8 weeks group. Conclusions: Based on histological results, BCP with HA and ${\beta}$- TCP and BCP with Si-HA and ${\beta}$- TCP appears to demonstrate acceptable space maintaining capacity and elicit significant new bone formation when compared to natural bone healing in 4 and 8 week periods.

THE EXPERIMENTAL STUDY OF THE BONE REGENERATION ON RABBIT MAXILLARY SINUS GRAFTING WITH ${\beta}$-TCP (가토 상악동에 이식된 ${\beta}$-TCP의 골치유에 관한 실험적 연구)

  • Park, Jung-Ha;Hwang, Kyung-Gyun;Park, Chang-Joo;Choi, Yong-Soo;Ma, Pyung-Soo;Paik, Seung-Sam;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.2
    • /
    • pp.107-116
    • /
    • 2006
  • Purpose:Maxillay sinus grafting is an effective treatment procedure to improve bone height in the posterior maxillar area for implant installation. Beta-tricalciumphosphate(${\beta}$-TCP) was introduced to be grafting substitute material, providing a reasonable bio-degradation time, no need for harvesting procedure. The purpose of this study is to evaluate bone healing & regeneration phase using histomorphometric and immunohistochemical analysis. Material & Methods:Sixteen rabbits were divided into 4 groups. Bi-lateral maxillary sinus membranes were elevated at each rabbits, ${\beta}$-TCP was augmented in left sinus, autogenous bone was augmented in right sinus. The rabbits were sacrificed at 2, 4, 8 and 12 weeks. We investigated the bone regeneration & growth factor expression. Results: 1. The mean new bone volume formation was 28.99${\pm}$6.55%, 49.54${\pm}$5.47%, 69.09${\pm}$8.90% in autogenous grafted area, and 22.86${\pm}$5.56%, 24.00${\pm}$4.09%, 34.11${\pm}$3.37% in ${\beta}$-TCP area at 4, 8, 12 weeks. Therefore, new bone formation in autogenous bone was significantly higher than ${\beta}$-TCP (p<0.05). 2. The BMP 2/4 expression in autogenous bone grafted area was higher at 4, 8 weeks. 3. There was no difference in expression pattern of BMP-7/PDGF/VEGF during grafted bone regeneration. Conclusion:The authors we conclude that the autogenous bone graft was faster than ${\beta}$-TCP in bone regeneration, and the BMP 2/4 were more important in graft bone regeneration.

Synthesis of β-tricalcium Phosphate by Using an Eggshell (달걀껍질을 이용한 생체용 β-tricalcium Phosphate 분말의 합성)

  • Kwon, Myoung-Do;Oh, Sun-Ho;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1103-1107
    • /
    • 2002
  • Biocompatible ${\beta}$-Tricalcium Phosphate(${\beta}$-TCP) powder was successfully synthesized by using a re-cycled eggshell and phosphoric acid. The crystallization behavior of the synthesized powder was dependent on the mixing ratio between the eggshell and phosphoric acid, the starting condition of the eggshell and calcination temperature. The ${\beta}$-TCP was stably synthesized in the 1:1.3~1:1.5 (wt%) mixing ratios of calcined eggshell and phosphoric acid. The synthesis was achieved at about $900{\circ}$ for 1h in an air atmosphere. The crystalline development and microstructure of the synthesized powder were examined by X-ray diffractometer and scanning electron microscopy.

THE EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON ${\beta}$-TCP GRAFT IN RABBIT CRANIAL BONE DEFECT (가토 두개골 결손부에 이식된 ${\beta}$-TCP의 골치유과정에서 맥동전자기장의 영향에 관한 연구)

  • Kim, Sang-Woo;Hwang, Kyung-Gyun;Lim, Byung-Sup;Park, Chang-Joo;Chung, Il-Hyuk;Paik, Seung-Sam;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.360-373
    • /
    • 2006
  • The purpose of this research was to investigate whether pulsed electromagnetic field (PEMF) stimulation applied to the rabbit cranial defects grafted with ${\beta}$-tricalcium phosphate (${\beta}$-TCP) could affect the new bone formation. With 16 New Zealand white rabbits under the same condition, bilateral calvarial bone defects were formed around the sagittal suture line. The defect on the left side was grafted with ${\beta}$-TCP, while on the right side was grafted by harvested autogenous bone. PEMF was applied to 8 rabbits for 8 hours per day. The bony specimen were divided into 3 groups, the group 1 was autogenous bone grafted specimen, the group 2 was ${\beta}$-TCP grafted with PEMF, and the group 3 was ${\beta}$-TCP grafted without PEMF. We investigated the bone regeneration & growth factor expression at 2, 4, 6, and 8 weeks. As a result, BMP 2 was expressed in the group 1 from 2 weeks, the group 2 from 4 weeks, and the group 3 from 6 weeks. BMP 4 was expressed in the group 1 from 2 weeks, in the group 2 and the group 3 from 4 weeks. 4. There was no significant difference in expression pattern of BMP 7, PDGF, VEGF, and TGF-${\beta}$1 during grafted bone regeneration in group 1, 2, and 3. According to our results, PEMF stimulation could be effective on the new bome formation in animal study, and have a feasibility of clinical use.

The Analysis of Bone regenerative effect with carriers of bone morphogenetic protein in rat calvarial defects (백서두개골 결손부에서 BMP전달체의 골재생효과분석)

  • Jung, Sung-Won;Jung, Jee-Hee;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.733-742
    • /
    • 2007
  • Bone morphogenetic proteins have been shown to possess significant osteoinSductive potential, but in order to take advantage of this effect for tissue engineering, carrier systems are essential. Successful carrier systems must enable vascular and cellular invasion, allowing BMP to act as a differentiation factor. The carrier should be reproducible, non-immunogenic, moldable, and space-providing, to define the contours of the resulting bone. The purpose of this study was to review available literature, in comparing various carriers of BMP on rat calvarial defect model. The following conclusions were deduced. 1. Bone regeneration of ACS/BMP, ${\beta}-TCP/BMP$, FFSS/BMP, $FFSS/{\beta}-TCP/BMP$, MBCP/BMP group were significantly greater than the control groups. 2. Bone density in the ACS/BMP group was greater than that in ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$ carrier group. 3. Bone regeneration in FFSS/BMP group was less than in ACS/BMP, ${\beta}-TCP/BMP$, MBCP/BMP group. However, New bone area of $FFSS/{\beta}-TCP/BMP$ carrier group were more greater than that of FFSS/BMP group. ACS, ${\beta}-TCP$, FFSS, $FFSS/{\beta}-TCP$, MBCP were used for carrier of BMP. However, an ideal carrier which was reproducible, non-immunogenic, moldable, and space-providing did not exist. Therefore, further investigation are required in developing a new carrier system.