DOI QR코드

DOI QR Code

Mechanical Properties of Hydroxyapatite β-TCP Composite with Changing SiO2 Contents

SiO2 첨가량에 따른 Hydroxyapatite β-TCP 복합체의 기계적 특성

  • Ryu, Su-Chak (Department of Nano Information Materials Engineering, Pusan National University) ;
  • Min, Sang-Ho (School of Materials Science and Engineering, Pusan National University, D S I (Dong Seo Incorporated)) ;
  • Park, Young-Min (School of Materials Science and Engineering, Pusan National University, D S I (Dong Seo Incorporated))
  • 류수착 (부산대학교 나노정보소재공학과) ;
  • 민상호 (부산대학교 재료공학과, (주)디에스아이) ;
  • 박영민 (부산대학교 재료공학과, (주)디에스아이)
  • Published : 2007.09.27

Abstract

Hydroxyapatites were prepared by the different $SiO_2$ addition at $1450^{\circ}C$ for 2h. With the increase of $SiO_2$ addition, microstructure, bulk density, porosity, mechanical strength of $hydroxyapatite/{\beta}-TCP$ composite were investigated. When the sintered HAp contained 1 wt% $SiO_2$, the each properties of the HAp were increased. But the excess addition of $SiO_2$ content above 1wt% the each property were decreased. This results were due to the ${\beta}-TCP$ phase. The ${\beta}-TCP$ phase appeared at 3 wt% $SiO_2$ addition and the ${\beta}-TCP$ phase was enhanced by the $SiO_2$ increasing.

Keywords

References

  1. P. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. J. A. Hubbell, Bio-technol., 13, 565 (1997)
  3. W. W. Minuth, M. Sittinger and S. Kloth, Cell Tissue Res., 291, 1 (1998) https://doi.org/10.1007/s004410050974
  4. R. B. Martin, Mater. Sci. Forum., 293, 5 (1999) https://doi.org/10.4028/www.scientific.net/MSF.293.5
  5. C. R. Nunes, S. J. Simske, R. Sachdeva and L. M. Wolford, J. Biomed. Mater. Res., 36, 560 (1997) https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<560::AID-JBM15>3.0.CO;2-E
  6. G. de With, H. J. A. van Dijk, N. Hattu, and K. Prijs, J. Mater. Sci., 16, 1592 (1981) https://doi.org/10.1007/BF02396876
  7. W. Suchanec, and M. Yoshimura, J. Mater. Res., 13, 94 (1998) https://doi.org/10.1557/JMR.1998.0015
  8. L. Borum, and O. C. Wilson Jr., Biomaterials, 24, 3681 (2003) https://doi.org/10.1016/S0142-9612(03)00240-0
  9. S. R. Kim, J. H. Lee, Y. T. Kim, D. H. Riu, S. J. Jung, Y. J. Lee, S. C. Chung and Y. H. Kim, Biomaterials, 24, 1389 (2003) https://doi.org/10.1016/S0142-9612(02)00523-9
  10. H. H. K. Xu, D. T. Smith, and C. G. Simon, Biomaterials, 25, 4615 (2004) https://doi.org/10.1016/j.biomaterials.2003.12.058
  11. M. Sayer, A.D. Stratilatov, J. Reid, L. Calderin, M.J. Stott, X. Yin, M. MacKenzie, T.J.N. Smith, J.A. Hendry and S.D. Langstaff, Biomaterials, 24, 369 (2003) https://doi.org/10.1016/S0142-9612(02)00327-7
  12. S. Padilla, J. Roman, S. Sanchez-Salcedo and M. Vallet-Regi, Acta Biomater., 2, 331 (2006) https://doi.org/10.1016/j.actbio.2006.01.006
  13. A. Martinez, I. Izquierdo-Barda and M. Vallet-Regi, Chem. Mater., 12, 3080 (2000) https://doi.org/10.1021/cm001107o