Browse > Article
http://dx.doi.org/10.7742/jksr.2011.5.1.011

EffeCt of tricalcium phosphate (TCP) as a scaffold during bone grafting using cultured periosteum-derived cells in a rat calvarial defect model  

Shim, Kyung-Mi (Department of Radiology, Nambu University)
Kim, Se-Eun (College of Veterinary Medicine, Chonnam National University)
Kim, Jong-Choon (College of Veterinary Medicine, Chonnam National University)
Bae, Chun-Sik (College of Veterinary Medicine, Chonnam National University)
Choi, Seok-Hwa (College of Veterinary Medicine, Chungbuk National University)
Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University)
Publication Information
Journal of the Korean Society of Radiology / v.5, no.1, 2011 , pp. 11-18 More about this Journal
Abstract
The periosteum contains multipotent cells that can differentiate into osteoblasts and chondrocytes. Cultured periosteum-derived cells (PDCs) have an osteogenic capacity. The purpose of this study was to evaluate the interaction of PDCs with bone graft biomaterial. After cell isolation from the calvarial periosteum of Sprague-Dawley rats, cultured PDCs were placed in critical-sized calvarial defects with beta-tricalcium phosphate (${\beta}$-TCP). All rats were sacrificed 8 weeks after bone graft surgery, and the bone regenerative ability of bone grafting sides was evaluated by plain radiography, micro-computed tomography (CT), and histological examination. PDCs grafted with ${\beta}$-TCP displayed enhanced calcification in the defect site, density of regenerated bone and new bone formation within the defect and its boundaries. Furthermore, these PDCs more efficiently regenerated new bone as compared to grafted ${\beta}$-TCP only. The results suggest that cultured PDCs have the potential to promote osteogenesis in bone defects.
Keywords
Bone regeneration; periosteum-derived cell; ${\beta}$-TCP; rat;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. A. Declercq, R. M. Verbeeck, L. I. De Ridder, E. H. Schacht and M. J. Cornelissen, "Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures", Biomaterials, Vol.26, No.24, pp.4964-4974, 2005.   DOI   ScienceOn
2 E. J. Jansen, P. J. Emans, N. A. Guldemond, L. W. Van Rhijn, T. J. Welting, S. K. Bulstra and R. Kuijer, "Human periosteum-derived cells from elderly patients as a source for cartilage tissue engineering? " J Tissue Eng Regen, Vol.2, No.6, pp.331-339, 2008.   DOI   ScienceOn
3 C. De Bari, F. Dell'Accio, J. Vanlauwe, J. Eyckmans, I. M. Khan, C. W. Archer, E. A. Jones, D. McGonagle, T. A. Mitsiadis, C. Pitzalis and F. P. Luyten, "Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis", Arthritis Rheum, Vol.54, No.4, pp.1209-1221, 2006.   DOI   ScienceOn
4 H. Agata, I. Asahina, Y. Yamazaki, M. Uchida, Y. Shinohara, M. J. Honda, H. Kagami and M. Ueda, "Effective bone engineering with periosteum-derived cells", J DentRes Vol.86, No.1, pp.79-83, 2007.   DOI   ScienceOn
5 K. H. Yoo, S. E. Kim, K. M. Shim, H. J. Park, S. H. Choi and S. S. Kang, "Effect of porcine cancellous bones on regeneration in rats with calvarial defect", J Life Science, Vol.20, No.8, pp.1207-1213, 2010.   DOI   ScienceOn
6 M. Kanou, T. Ueno, T. Kagawa, T. Fujii, Y. Sakata, N. Ishida, J. Fukunaga and T. Sugahara, "Osteogenic potential of primed periosteum graft in the rat calvarial model", Ann Plast Surg, Vol.54, pp.71-78, 2005.   DOI   ScienceOn
7 K. Hanada, L. A. Solchaga, A. I. Caplan, T. M. Hering, V. M. Goldberg, J. U. Yoo and B. Johnstone. "BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell chondrogenesis", J Cell Biochem, Vol.81, No.2, pp.284-294, 2001.   DOI   ScienceOn
8 Y. Sakata, T. Ueno, T. Kagawa, M. Kanou, T. Fujii, E. Yamachika and T. Sugahara, "Osteogenic potential of cultured human periosteum-derived cells - a pilot study of human cell transplantation into a rat calvarial defect model" J Craniomaxillofac Surg, Vol.34, No.8, pp.461-465, 2006.   DOI   ScienceOn
9 P. S. Gomes, J. D. Santos and M. H. Fernandes, "Cell-induced response by tetracyclines on human bone marrow colonized hydroxyapatite and bonelike", Acta Biomater, Vol.4, No.3, pp.630-637, 2008.   DOI   ScienceOn
10 I. Drosse, E. Volkmer, R. Capanna, P. De Biase, W. Mutschler and M. Schieker, "Tissue engineering for bone defect healing: an update on a multi-component approach", Injury, Suppl 2, pp. S9-S20, 2008.
11 Q. Xu, H. Lu, J. Zhang, G. Lu, Z. Deng and A. Mo, "Tissue engineering scaffold material of porousnanohydroxyapatite/polyamide 66", Int J Nanomedicine, Vol.5, pp.331-335, 2010.
12 5. T. Matsuno, Y. Hashimoto, S. Adachi, K. Omata, Y. Yoshitaka, Y. Ozeki, Y. Umezu, Y. Tabata, M. Nakamura and T. Satoh, "Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering", Dent Mater J, Vol.27, No.6, pp.827-834, 2008.   DOI   ScienceOn
13 M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak, "Multilineage potential of adult human mesenchymal stem cells", Science, Vol.284, No.5411, pp.143-147, 1999.   DOI   ScienceOn