• Title/Summary/Keyword: $\beta$-$Ga_2$$O_3

Search Result 51, Processing Time 0.021 seconds

Schottky Barrier Diode Fabricated on Single Crystal β-Ga2O3 Semiconductor (단결정 β-Ga2O3 반도체를 이용한 쇼트키 배리어 다이오드 제작)

  • Kim, Hyun-Seop;Jo, Min-Gi;Cha, Ho-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.21-25
    • /
    • 2017
  • In this study, we have fabricated Schottky barrier diodes (SBD) on single-crystal ${\beta}-Ga_2O_3$ semiconductor that has received much attention for use in next-generation power devices. The SBD had a Pt/Ti/Au Schottky contact on a $2{\mu}m$ Sn-doped low concentration N-type epitaxial layer. The fabricated device exhibited a breakdown voltage of > 180 V, a specific on-resistance of $1.26m{\Omega}{\cdot}cm^2$, and forward current densities of $77A/cm^2$ at 1 V and $473A/cm^2$ at 1.5 V, which proved the potential for use in power device fabrication.

Thin film growth of ε-Ga2O3 and photo-electric properties of MSM UV photodetectors (ε-Ga2O3 박막 성장 및 MSM UV photodetector의 전기광학적 특성)

  • Park, Sang Hun;Lee, Han Sol;Ahn, Hyung Soo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.179-186
    • /
    • 2019
  • In this study, we investigated the structural properties of $Ga_2O_3$ thin films and the photo-electrical properties of metal-semiconductor-metal (MSM) photodetectors deposited by Ti/Au electrodes. $Ga_2O_3$ thin films were grown at different temperatures using metal organic chemical vapor deposition (MOCVD). The crystal phase of $Ga_2O_3$ changed from ${\varepsilon}$-phase to ${\beta}$-phase depending on the growth temperature. The crystal structure of ${\varepsilon}-Ga_2O_3$ was confirmed by X-ray diffraction (XRD) analysis and the formation mechanism of crystal structure was discussed by scanning electron microscopy (SEM) images. From the results of current-voltage (I-V) and time-dependent photoresponse characteristics under the illumination of external lights, we confirmed that the MSM photodetector fabricated by ${\varepsilon}-Ga_2O_3$ showed much better photocurrent characteristics in the 266 nm UV range than in the visible range.

Synthesis and Characterization of Gallium Nitride Powders from a Gallium(III) Sulfate Salt in Flowing Ammonia

  • Jung, Woo-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1058-1061
    • /
    • 2003
  • Gallium Nitride (GaN) powders were synthesized by calcining a gallium(III) sulfate salt in flowing ammonia in the temperature range 500-1100$^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-Ray Diffraction (XRD). The salt decomposed to ${\gamma}$-Ga$_2$O$_3$ and then converted to GaN without ${\gamma}$-${\beta}$Ga$_2$O$_3$ phase transition. Variations in XRD patterns and weight loss of samples with temperature indicate that the conversion of ${\gamma}$-Ga$_2$O$_3$ to GaN does not proceed through Ga$_2$O but stepwise via amorphous gallium oxynitride (GaO$\_$x/N$\_$y/) as intermediates. Room-temperature photoluminescence spectra of GaN powders obtained showed the emission peak at 363 nm and no yellow band.

MOCVD Growth and Characterization of Heteroepitaxial Beta-Ga2O3 (MOCVD 성장법을 이용한 Beta-Ga2O3 박막의 헤테로에피택시 성장 특성)

  • Jeong Soo Chung;An-Na Cha;Gieop Lee;Sea Cho;Young-Boo Moon;Myungshik Gim;Moo Sung Lee;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this study, we investigated a method of growing single crystal 𝛽-Ga2O3 thin films on a c-plane sapphire substrate using MOCVD. We confirmed the optimal growth conditions to increase the crystallinity of the 𝛽-Ga2O3 thin film and confirmed the effect of the ratio between O2 and Ga precursors on crystal growth on the crystallinity of the thin film. The growth temperature range was 600~1100℃, and crystallinity was analyzed when the O2/TMGa ratio was 800~6000. As a result, the highest crystallinity thin film was obtained when the molar ratio between precursors was 2400 at 1100℃. The surface of the thin film was observed with a FE-SEM and XRD ω-scan of the thin film, the FWHM was found to be 1.17° and 1.43° at the and (${\bar{2}}01$) and (${\bar{4}}02$) diffraction peaks. The optical band gap energy obtained was 4.78 ~ 4.88 eV, and the films showed a transmittance of over 80% in the near-ultraviolet and visible light regions.

Self-catalytic Growth of ${\beta}$-Ga2O3 Nanowires Deposited by Radio-Frequency Magnetron Sputtering

  • Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.291.2-291.2
    • /
    • 2013
  • Growth behavior of b-Ga2O3 nanowires (NWs) on sapphire(0001) substrates during radio-frequency magnetron sputtering is reported. Upon fabrication, flat thin films grew initially, subsequent to which, NW bundles were formed on the surface of thin film with increasing film thickness. This transition of the growth mode occurred only at temperatures greater than ${\sim}450^{\circ}C$. The b-Ga2O3 NWs were grown through the self-catalytic vapor-liquid-solid mechanism with self-assembled Ga seeds. Secondary growth of NWs, which occurred from the sides of primary NWs resulting in branched NW structures, was also observed. Finally, the room temperature photoluminescence properties of as-grown and annealed b-Ga2O3 NW samples were investigated.

  • PDF

Preparation of Gallium Nitride Powders and Nanowires from a Gallium(III) Nitrate Salt in Flowing Ammonia

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.51-54
    • /
    • 2004
  • Gallium nitride (GaN) powders were prepared by calcining a gallium(III) nitrate salt in flowing ammonia in the temperature ranging from 500 to 1050 $^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-ray diffraction and $^{71}Ga$ MAS (magic-angle spinning) NMR spectroscopy. The salt decomposed to ${\gamma}-Ga_2O_3$ and then converted to GaN without ${\gamma}-{\beta}Ga_2O_3$ phase transition. It is most likely that the conversion of ${\gamma}-Ga_2O_3$ to GaN does not proceed through $Ga_2O$ but stepwise via amorphous gallium oxynitride ($GaO_xN_y$) as intermediates. The GaN nanowires and microcrystals were obtained by calcining the pellet containing a mixture of ${\gamma}-Ga_2O_3$ and carbon in flowing ammonia at 900 $^{\circ}C$ for 15 h. The growth of the nanowire might be explained by the vapor-solid (VS) mechanism in a confined reactor. Room-temperature photoluminescence spectra of as-synthesized GaN powders obtained showed the emission peak at 363 nm.

Preparation of $Ga_{2}O_{3}$Red Phosphor Powders by Chemical Method (화학적 방법에 의한 $Ga_{2}O_{3}$적색 형광체 분말의 제조)

  • 서강원;박인용;이종원;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.851-854
    • /
    • 2001
  • Europium-activated Ga$_2$O$_3$powders were prepared by modified "Pechini method" from mixed aqueous solutions of gallium nitrate, europium nitrate, ethylene glycol and citric acid. The formation process and structure of the phosphor powders were investigated by means of TG/DTA, XRD and SEM. It has been found that the phosphor powders were amorphous up to 50$0^{\circ}C$ and changed into crystalline $\beta$-Ga$_2$O$_3$phase above $600^{\circ}C$. The resulting nano-sized powders were obtained. Red luminescence in emission spectra were observed at room temperature.

  • PDF

Flavonol Glycosides of Maesa Lanceolata Leaves

  • Manguro, Lawrence O. Arot;Lemmen, Peter;Ugi, Ivar;Kraus, Wolfgang
    • Natural Product Sciences
    • /
    • v.8 no.3
    • /
    • pp.77-82
    • /
    • 2002
  • An investigation of the methanolic extract of Maesa lanceolata leaves has led to the isolation of four novel flavonol glycosides characterised as myricetin 3-0-2', 3', 4'-triacetylxylopyranoside (1), quercetin $3-O-{\beta}-3'$, $6'-diacetylglucopyranosyl-(1{\longrightarrow}4)-{\alpha}-2'$, 3'-diacetylrhamnopyranoside (2), myricetin $3-O-xylopyranosyl-(1{\to}3)-{\alpha}-rhamnopyranoside$ (3) and quercetin $3-O-{\beta}-ga1actopyranosyl-(1{\to}4)-{\alpha}-rhamnopyranoside-7-O-{\beta}-galactopyranoside$ (4). Also isolated from the same extract were known flavonols; quercetin (5), myricetin (6), quercetin 3-O-xylopyranoside (7), quercetin $3-O-{\alpha}-rhamnopyranoside$ (8), myricetin $3-O-{\alpha}-rhamnopyranoside$ (9), myricetin $3-O-{\beta}-galactopyranoside$ (10) and quercetin 3-O-rutinoside (11).

Self-Heating Effects in β-Ga2O3/4H-SiC MESFETs (β-Ga2O3/4H-SiC MESFETs에서의 Self-Heating)

  • Kim, Min-Yeong;Seo, Hyun-Su;Seo, Ji-Woo;Jung, Seung-Woo;Lee, Hee-Jae;Byun, Dong-Wook;Shin, Myeong-Cheol;Schweitz, Michael A.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Despite otherwise advantageous properties, the performance and reliability of devices manufactured in β-Ga2O3 on semi-insulating Ga2O3 substrates may degrade because of poorly mitigated self-heating, which results from the low thermal conductivity of Ga2O3 substrates. In this work, we investigate and compare self-heating and device performance of β-Ga2O3 MESFETs on substrates of semi-insulating Ga2O3 and 4H-SiC. Electron mobility in β-Ga2O3 is negatively affected by increasing lattice temperature, which consequently also negatively influences device conductance. The superior thermal conductivity of 4H-SiC substrates resulted in reduced β-Ga2O3 lattice temperatures and, thus, mitigates MESFET drain current degradation. This, in turn, allows practically reduced device dimensions without deteriorating the performance and improved device reliability.

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.