Browse > Article
http://dx.doi.org/10.5012/bkcs.2004.25.1.051

Preparation of Gallium Nitride Powders and Nanowires from a Gallium(III) Nitrate Salt in Flowing Ammonia  

Jung, Woo-Sik (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University)
Publication Information
Abstract
Gallium nitride (GaN) powders were prepared by calcining a gallium(III) nitrate salt in flowing ammonia in the temperature ranging from 500 to 1050 $^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-ray diffraction and $^{71}Ga$ MAS (magic-angle spinning) NMR spectroscopy. The salt decomposed to ${\gamma}-Ga_2O_3$ and then converted to GaN without ${\gamma}-{\beta}Ga_2O_3$ phase transition. It is most likely that the conversion of ${\gamma}-Ga_2O_3$ to GaN does not proceed through $Ga_2O$ but stepwise via amorphous gallium oxynitride ($GaO_xN_y$) as intermediates. The GaN nanowires and microcrystals were obtained by calcining the pellet containing a mixture of ${\gamma}-Ga_2O_3$ and carbon in flowing ammonia at 900 $^{\circ}C$ for 15 h. The growth of the nanowire might be explained by the vapor-solid (VS) mechanism in a confined reactor. Room-temperature photoluminescence spectra of as-synthesized GaN powders obtained showed the emission peak at 363 nm.
Keywords
Gallium nitride; Powder; Nanowire; Confined reactor; $^{71}Ga$ MAS NMR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 20  (Related Records In Web of Science)
Times Cited By SCOPUS : 18
연도 인용수 순위
1 Peng, H. Y.; Zhou, X. T.; Wang, N.; Zheng, Y. F.; Liao, L. S.; Shi,W. S.; Lee, C. S.; Lee, S. T. Chem. Phys. Lett. 2000, 327, 263.   DOI   ScienceOn
2 Yang, Y.; Tran, C.; Leppert, V.; Risbud, S. H. Mater. Lett. 2000,43, 240.   DOI   ScienceOn
3 Wood, G. L.; Pruss, E. A.; Paine, R. T. Chem. Mater. 2001, 13, 12.   DOI   ScienceOn
4 Balkas, C. M.; Davis, R. F. J. Am. Ceram. Soc. 1996, 79, 2309.   DOI   ScienceOn
5 Jung, W.-S.; Chung, Y. K.; Shin, D. M.; Kim, S.-D. Bull. Chem.Soc. Jpn. 2002, 75, 1263.   DOI   ScienceOn
6 Campbell, W. B. In Whisker Technology; Levitt, A. P., Ed.; Wiley-Interscience: New York, U. S. A., 1970; Chap. 2.
7 Cheng, G. S.; Zhang, L. D.; Zhu, Y.; Fei, G. T.; Li, L.; Mo, C. M.;Mao, Y. Q. Appl. Phys. Lett. 1999, 75, 2455.   DOI
8 Ambacher, O. J. Phys. D: Appl. Phys. 1998, 31, 2653.   DOI   ScienceOn
9 Sakai, S.; Kurai, S.; Abe, T.; Naoi, Y. Jpn. J. Appl. Phys. 1996, 35,L77.   DOI   ScienceOn
10 Ogino, T.; Aoki, M. Jpn. J. Appl. Phys. 1980, 19, 2395.   DOI
11 Porowski, S. J. Crystal Growth 1996, 166, 583.   DOI   ScienceOn
12 Han, O. H.; Timken, H. K. C.; Oldfield, E. J. Chem. Phys. 1988,89, 6046.   DOI
13 Jung, W.-S. Mater. Lett. 2002, 57, 110.   DOI   ScienceOn
14 Wolter, S. D.; Luther, B. P.; Waltemyer, D. L.; Onneby, C.;Mohney, S. E.; Molnar, R. J. Appl. Phys. Lett. 1997, 70, 2156.   DOI   ScienceOn
15 Jung, W.-S.; Park, C.; Han, S. Bull. Korean Chem. Soc. 2003, 24,1011.   DOI   ScienceOn
16 Joint Committee on Powder Diffraction Standards (JCPDS) CardNo. 20-0426.
17 Smith, M. E. Appl. Magn. Reson. 1993, 4, 1.   DOI
18 Han, W.; Fan, S.; Li, Q.; Hu, Y. Science 1997, 277, 1287.   DOI   ScienceOn